Range-separated density-functional theory with random phase approximation applied to noncovalent intermolecular interactions.

Range-separated methods combining a short-range density functional with long-range random phase approximations (RPAs) with or without exchange response kernel are tested on rare-gas dimers and the S22 benchmark set of weakly interacting complexes of Jurecka et al. [Phys. Chem. Chem. Phys. 8, 1985 (2006)]. The methods are also compared to full-range RPA approaches. Both range separation and inclusion of the Hartree-Fock exchange kernel largely improve the accuracy of intermolecular interaction energies. The best results are obtained with the method called RSH+RPAx, which yields interaction energies for the S22 set with an estimated mean absolute error of about 0.5-0.6 kcal/mol, corresponding to a mean absolute percentage error of about 7%-9% depending on the reference interaction energies used. In particular, the RSH+RPAx method is found to be overall more accurate than the range-separated method based on long-range second-order Moller-Plesset (MP2) perturbation theory (RSH+MP2).

[1]  Kimihiko Hirao,et al.  A density functional study of van der Waals interactions , 2002 .

[2]  Jirí Cerný,et al.  The X3LYP extended density functional accurately describes H-bonding but fails completely for stacking. , 2005, Physical chemistry chemical physics : PCCP.

[3]  Hans-Joachim Werner,et al.  Accurate calculations of intermolecular interaction energies using explicitly correlated coupled cluster wave functions and a dispersion-weighted MP2 method. , 2009, The journal of physical chemistry. A.

[4]  Xavier Gonze,et al.  Accurate density functionals: Approaches using the adiabatic-connection fluctuation-dissipation theorem , 2002 .

[5]  John P. Perdew,et al.  Density functional for short-range correlation: Accuracy of the random-phase approximation for isoelectronic energy changes , 2000 .

[6]  Yan Li,et al.  Ab initio calculation of van der Waals bonded molecular crystals. , 2009, Physical review letters.

[7]  Jirí Cerný,et al.  Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs. , 2006, Physical chemistry chemical physics : PCCP.

[8]  J. Ángyán,et al.  Hybrid functional with separated range , 2005 .

[9]  Georg Kresse,et al.  Accurate bulk properties from approximate many-body techniques. , 2009, Physical review letters.

[10]  A. Savin,et al.  Short-range exchange and correlation energy density functionals: beyond the local-density approximation. , 2004, The Journal of chemical physics.

[11]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[12]  Andreas Savin,et al.  Adiabatic-connection fluctuation-dissipation density-functional theory based on range separation. , 2008, Physical review letters.

[13]  J. Perdew Local density and gradient-corrected functionals for short-range correlation: Antiparallel-spin and non-RPA contributions , 1993 .

[14]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[15]  H. Werner,et al.  A short-range gradient-corrected density functional in long-range coupled-cluster calculations for rare gas dimers. , 2005, Physical chemistry chemical physics : PCCP.

[16]  John P. Perdew,et al.  DENSITY-FUNCTIONAL CORRECTION OF RANDOM-PHASE-APPROXIMATION CORRELATION WITH RESULTS FOR JELLIUM SURFACE ENERGIES , 1999 .

[17]  K. Hirao,et al.  An improved long-range corrected hybrid functional with vanishing Hartree-Fock exchange at zero interelectronic distance (LC2gau-BOP). , 2009, The Journal of chemical physics.

[18]  F. Manby,et al.  Local and density fitting approximations within the short-range/long-range hybrid scheme: application to large non-bonded complexes. , 2008, Physical chemistry chemical physics : PCCP.

[19]  Kiyoyuki Terakura,et al.  Total energy method from many-body formulation. , 2002, Physical review letters.

[20]  A. Becke,et al.  Exchange-hole dipole moment and the dispersion interaction. , 2005, The Journal of chemical physics.

[21]  Edward G Hohenstein,et al.  Basis set consistent revision of the S22 test set of noncovalent interaction energies. , 2010, The Journal of chemical physics.

[22]  P. Gori-Giorgi,et al.  A short-range gradient-corrected spin density functional in combination with long-range coupled-cluster methods: Application to alkali-metal rare-gas dimers , 2006 .

[23]  Georg Kresse,et al.  Hybrid functionals including random phase approximation correlation and second-order screened exchange. , 2010, The Journal of chemical physics.

[24]  J. Ángyán On the exchange-hole model of London dispersion forces. , 2007, The Journal of chemical physics.

[25]  A. D. McLACHLAN,et al.  Time-Dependent Hartree—Fock Theory for Molecules , 1964 .

[26]  Andreas Savin,et al.  van der Waals forces in density functional theory: Perturbational long-range electron-interaction corrections , 2005, cond-mat/0505062.

[27]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[28]  Hiromi Nakai,et al.  Density functional method including weak interactions: Dispersion coefficients based on the local response approximation. , 2009, The Journal of chemical physics.

[29]  T. Van Voorhis,et al.  Improving the accuracy of the nonlocal van der Waals density functional with minimal empiricism. , 2009, The Journal of chemical physics.

[30]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[31]  A. Savin,et al.  Short-Range Exchange-Correlation Energy of a Uniform Electron Gas with Modified Electron-Electron Interaction , 2004, cond-mat/0611559.

[32]  Ivano Tavernelli,et al.  Optimization of effective atom centered potentials for london dispersion forces in density functional theory. , 2004, Physical review letters.

[33]  Neil S. Ostlund,et al.  The correlation energy in the random phase approximation: Intermolecular forces between closed‐shell systems , 1977 .

[34]  Georg Kresse,et al.  Cohesive energy curves for noble gas solids calculated by adiabatic connection fluctuation-dissipation theory , 2008 .

[35]  Stefano de Gironcoli,et al.  Efficient calculation of exact exchange and RPA correlation energies in the adiabatic-connection fluctuation-dissipation theory , 2009, 0902.0889.

[36]  Saverio Moroni,et al.  Local-spin-density functional for multideterminant density functional theory , 2006 .

[37]  Bradley P. Dinte,et al.  Constraint satisfaction in local and gradient susceptibility approximations: Application to a van der Waals density functional. , 1996, Physical review letters.

[38]  G. Scuseria,et al.  The importance of middle-range Hartree-Fock-type exchange for hybrid density functionals. , 2007, The Journal of chemical physics.

[39]  Qin Wu,et al.  Empirical correction to density functional theory for van der Waals interactions , 2002 .

[40]  Thomas M Henderson,et al.  The ground state correlation energy of the random phase approximation from a ring coupled cluster doubles approach. , 2008, The Journal of chemical physics.

[41]  M. Dion,et al.  van der Waals density functional for general geometries. , 2004, Physical review letters.

[42]  Stefan Grimme,et al.  Accurate description of van der Waals complexes by density functional theory including empirical corrections , 2004, J. Comput. Chem..

[43]  Electron Correlations at Metallic Densities , 1968 .

[44]  F. Furche Developing the random phase approximation into a practical post-Kohn-Sham correlation model. , 2008, The Journal of chemical physics.

[45]  T. Van Voorhis,et al.  Fluctuation-dissipation theorem density-functional theory. , 2005, The Journal of chemical physics.

[46]  Filipp Furche,et al.  Molecular tests of the random phase approximation to the exchange-correlation energy functional , 2001 .

[47]  M. Schütz,et al.  Density-functional theory-symmetry-adapted intermolecular perturbation theory with density fitting: a new efficient method to study intermolecular interaction energies. , 2005, The Journal of chemical physics.

[48]  Benjamin G. Janesko,et al.  The role of the reference state in long-range random phase approximation correlation. , 2009, The Journal of chemical physics.

[49]  Renzo Cimiraglia,et al.  Merging multireference perturbation and density-functional theories by means of range separation: Potential curves for Be 2 , Mg 2 , and Ca 2 , 2010 .

[50]  Julien Toulouse,et al.  On the universality of the long-/short-range separation in multiconfigurational density-functional theory. , 2007, The Journal of chemical physics.

[51]  Petros Koumoutsakos,et al.  Dispersion corrections to density functionals for water aromatic interactions. , 2004, The Journal of chemical physics.

[52]  Andreas Savin,et al.  Long-range/short-range separation of the electron-electron interaction in density functional theory , 2004 .

[53]  Donald G Truhlar,et al.  Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions. , 2006, Journal of chemical theory and computation.

[54]  Saroj K. Nayak,et al.  Towards extending the applicability of density functional theory to weakly bound systems , 2001 .

[55]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[56]  D. Langreth,et al.  Van Der Waals Interactions In Density Functional Theory , 2007 .

[57]  Angel Rubio,et al.  First-principles description of correlation effects in layered materials. , 2006, Physical review letters.

[58]  H. Stoll,et al.  Development and assessment of a short-range meta-GGA functional. , 2009, The Journal of chemical physics.

[59]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[60]  Thomas Frauenheim,et al.  Hydrogen bonding and stacking interactions of nucleic acid base pairs: A density-functional-theory based treatment , 2001 .

[61]  Troy Van Voorhis,et al.  Nonlocal van der Waals density functional made simple. , 2009, Physical review letters.

[62]  K. Tang,et al.  The van der Waals potentials between all the rare gas atoms from He to Rn , 2003 .

[63]  Thomas M Henderson,et al.  Long-range-corrected hybrids including random phase approximation correlation. , 2009, The Journal of chemical physics.

[64]  J. Ángyán,et al.  London dispersion forces by range-separated hybrid density functional with second order perturbational corrections: the case of rare gas complexes. , 2007, The Journal of chemical physics.

[65]  M. Head‐Gordon,et al.  Long-range corrected double-hybrid density functionals. , 2009, The Journal of chemical physics.

[66]  N. Handy,et al.  A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP) , 2004 .

[67]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[68]  Benjamin G. Janesko,et al.  Long-range-corrected hybrid density functionals including random phase approximation correlation: application to noncovalent interactions. , 2009, The Journal of chemical physics.

[69]  Matthias Scheffler,et al.  Exploring the random phase approximation: Application to CO adsorbed on Cu(111) , 2009 .

[70]  J. Ángyán,et al.  Potential curves for alkaline-earth dimers by density functional theory with long-range correlation corrections , 2005 .

[71]  K. Burke,et al.  Describing static correlation in bond dissociation by Kohn-Sham density functional theory. , 2004, The Journal of chemical physics.