A Logical Approach to Decomposable Matroids

A notion of branch-width, which generalizes the one known for graphs, can be defined for matroids. We first give a proof of the polynomial time model-checking of monadic second-order formulas on representable matroids of bounded branch-width, by reduction to monadic second-order formulas on trees. This proof is much simpler than the one previously known. We also provide a link between our logical approach and a grammar that allows to build matroids of bounded branch-width. Finally, we introduce a new class of non-necessarily representable matroids, described by a grammar and on which monadic second-order formulas can be checked in linear time.

[1]  Daniel Král,et al.  Decomposition width - a new width parameter for matroids , 2009, ArXiv.

[2]  Thomas Wilke,et al.  Logic and automata : history and perspectives , 2007 .

[3]  Paul D. Seymour,et al.  Approximating clique-width and branch-width , 2006, J. Comb. Theory, Ser. B.

[4]  Petr Hlinený Branch-width, parse trees, and monadic second-order logic for matroids , 2006, J. Comb. Theory, Ser. B.

[5]  Petr Hlinený,et al.  Finding Branch-Decompositions and Rank-Decompositions , 2007, SIAM J. Comput..

[6]  Bruno Courcelle,et al.  Linear delay enumeration and monadic second-order logic , 2009, Discret. Appl. Math..

[7]  John McCarthy,et al.  Circumscription - A Form of Non-Monotonic Reasoning , 1980, Artif. Intell..

[8]  Paul D. Seymour,et al.  Matroid representation over GF(3) , 1979, J. Comb. Theory, Ser. B.

[9]  Georg Gottlob,et al.  Width Parameters Beyond Tree-width and their Applications , 2008, Comput. J..

[10]  Bert Gerards,et al.  The Excluded Minors for GF(4)-Representable Matroids , 1997, J. Comb. Theory, Ser. B.

[11]  Detlef Seese,et al.  Easy Problems for Tree-Decomposable Graphs , 1991, J. Algorithms.

[12]  Petr Hlinený,et al.  On Matroid Properties Definable in the MSO Logic , 2003, MFCS.

[13]  Yann Strozecki,et al.  Enumeration complexity and matroid decomposition , 2010 .

[14]  Vladimir Gurvich,et al.  On the Complexity of Some Enumeration Problems for Matroids , 2005, SIAM J. Discret. Math..

[15]  Bruno Courcelle,et al.  Graph Rewriting: An Algebraic and Logic Approach , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[16]  Petr Hliněný,et al.  Matroid tree-width , 2006 .

[17]  Johann A. Makowsky,et al.  On spectra of sentences of monadic second order logic with counting , 2004, Journal of Symbolic Logic.

[18]  W. T. Tutte A homotopy theorem for matroids. II , 1958 .

[19]  Martin Grohe,et al.  Logic, graphs, and algorithms , 2007, Logic and Automata.

[20]  Bruno Courcelle,et al.  The monadic second-order logic of graphs III: tree-decompositions, minor and complexity issues , 1992, RAIRO Theor. Informatics Appl..

[21]  Saharon Shelah,et al.  Spectra of monadic second-order formulas with one unary function , 2003, 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings..

[22]  Guillaume Bagan,et al.  MSO Queries on Tree Decomposable Structures Are Computable with Linear Delay , 2006, CSL.

[23]  Hubert Comon,et al.  Tree automata techniques and applications , 1997 .

[24]  Stéphan Thomassé,et al.  Branchwidth of graphic matroids , 2007 .

[25]  Robert E. Tarjan,et al.  Bounds on Backtrack Algorithms for Listing Cycles, Paths, and Spanning Trees , 1975, Networks.

[26]  Daniel Král Decomposition Width of Matroids , 2010, ICALP.

[27]  Illya V. Hicks,et al.  The branchwidth of graphs and their cycle matroids , 2007, J. Comb. Theory, Ser. B.

[28]  Elwyn R. Berlekamp,et al.  On the inherent intractability of certain coding problems (Corresp.) , 1978, IEEE Trans. Inf. Theory.

[29]  Arnaud Durand,et al.  The Inference Problem for Propositional Circumscription of Affine Formulas Is coNP-Complete , 2003, STACS.

[30]  Jan van Leeuwen,et al.  Handbook of Theoretical Computer Science, Vol. B: Formal Models and Semantics , 1994 .

[31]  Hans L. Bodlaender,et al.  A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..

[32]  Ronald Fagin,et al.  Spectra with Only Unary Function Symbols , 1997, CSL.

[33]  Satoru Iwata,et al.  A combinatorial strongly polynomial algorithm for minimizing submodular functions , 2001, JACM.

[34]  James W. Thatcher,et al.  Generalized finite automata theory with an application to a decision problem of second-order logic , 1968, Mathematical systems theory.

[35]  Neil Robertson,et al.  Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.