Cell cycle-dependent regulation of yeast telomerase by Ku

[1]  R. Wellinger,et al.  The generation of proper constitutive G-tails on yeast telomeres is dependent on the MRX complex. , 2004, Genes & development.

[2]  K. Myung,et al.  Regulation of Telomere Length and Suppression of Genomic Instability in Human Somatic Cells by Ku86 , 2004, Molecular and Cellular Biology.

[3]  Peter Sperisen,et al.  Telomere Length Homeostasis Is Achieved via a Switch between Telomerase- Extendible and -Nonextendible States , 2004, Cell.

[4]  E. Gilson,et al.  RPA regulates telomerase action by providing Est1p access to chromosome ends , 2004, Nature Genetics.

[5]  A. Bertuch,et al.  The Ku Heterodimer Performs Separable Activities at Double-Strand Breaks and Chromosome Termini , 2003, Molecular and Cellular Biology.

[6]  D. Gottschling,et al.  Ku interacts with telomerase RNA to promote telomere addition at native and broken chromosome ends. , 2003, Genes & development.

[7]  E. Blackburn,et al.  Telomerase and ATM/Tel1p protect telomeres from nonhomologous end joining. , 2003, Molecular cell.

[8]  Susan M. Gasser,et al.  Live Imaging of Telomeres yKu and Sir Proteins Define Redundant Telomere-Anchoring Pathways in Yeast , 2002, Current Biology.

[9]  J. Shay,et al.  Human Ku70/80 Associates Physically with Telomerase through Interaction with hTERT* , 2002, The Journal of Biological Chemistry.

[10]  S. Evans,et al.  The Est1 subunit of Saccharomyces cerevisiae telomerase makes multiple contributions to telomere length maintenance. , 2002, Genetics.

[11]  Conrad A. Nieduszynski,et al.  Ku complex controls the replication time of DNA in telomere regions. , 2002, Genes & development.

[12]  S. Teng,et al.  Est1p As a Cell Cycle-Regulated Activator of Telomere-Bound Telomerase , 2002, Science.

[13]  D. Lydall,et al.  EXO1-dependent single-stranded DNA at telomeres activates subsets of DNA damage and spindle checkpoint pathways in budding yeast yku70Delta mutants. , 2002, Genes & development.

[14]  M. McIntosh,et al.  A quantitative assay for telomere protection in Saccharomyces cerevisiae. , 2002, Genetics.

[15]  T. Cech,et al.  Essential Regions of Saccharomyces cerevisiae Telomerase RNA: Separate Elements for Est1p and Est2p Interaction , 2002, Molecular and Cellular Biology.

[16]  Virginia A Zakian,et al.  The role of the Mre11-Rad50-Xrs2 complex in telomerase- mediated lengthening of Saccharomyces cerevisiae telomeres , 2001, Current Biology.

[17]  M. Hande,et al.  Effects of DNA nonhomologous end-joining factors on telomere length and chromosomal stability in mammalian cells , 2001, Current Biology.

[18]  J. Shay,et al.  Telomere Position Effect in Human Cells , 2001, Science.

[19]  V. Lundblad,et al.  Cdc13 Delivers Separate Complexes to the Telomere for End Protection and Replication , 2001, Cell.

[20]  D. Gottschling,et al.  The function of a stem-loop in telomerase RNA is linked to the DNA repair protein Ku , 2001, Nature Genetics.

[21]  V. Zakian,et al.  The Saccharomyces telomere-binding protein Cdc13p interacts with both the catalytic subunit of DNA polymerase alpha and the telomerase-associated est1 protein. , 2000, Genes & development.

[22]  T. Hughes,et al.  The Est3 protein is a subunit of yeast telomerase , 2000, Current Biology.

[23]  E. Gilson,et al.  Cell cycle restriction of telomere elongation , 2000, Current Biology.

[24]  B. Futcher,et al.  The Est1 Subunit of Yeast Telomerase Binds the Tlc1 Telomerase RNA , 2000, Molecular and Cellular Biology.

[25]  T. Cech,et al.  Essential functions of amino-terminal domains in the yeast telomerase catalytic subunit revealed by selection for viable mutants. , 1999, Genes & development.

[26]  E. Blackburn,et al.  Ku is associated with the telomere in mammals. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[27]  S. Evans,et al.  Est1 and Cdc13 as comediators of telomerase access. , 1999, Science.

[28]  J. Murray,et al.  DNA damage triggers disruption of telomeric silencing and Mec1p-dependent relocation of Sir3p , 1999, Current Biology.

[29]  Sophie G. Martin,et al.  Relocalization of Telomeric Ku and SIR Proteins in Response to DNA Strand Breaks in Yeast , 1999, Cell.

[30]  Jian Li,et al.  The yeast Ku heterodimer is essential for protection of the telomere against nucleolytic and recombinational activities , 1998, Current Biology.

[31]  Edward J. Louis,et al.  Mutation of yeast Ku genes disrupts the subnuclear organization of telomeres , 1998, Current Biology.

[32]  James E. Haber,et al.  Telomere maintenance is dependent on activities required for end repair of double-strand breaks , 1998, Current Biology.

[33]  R. Wellinger,et al.  Yeast Ku as a regulator of chromosomal DNA end structure. , 1998, Science.

[34]  S. Jackson,et al.  Components of the Ku‐dependent non‐homologous end‐joining pathway are involved in telomeric length maintenance and telomeric silencing , 1998, The EMBO journal.

[35]  Bas van Steensel,et al.  TRF2 Protects Human Telomeres from End-to-End Fusions , 1998, Cell.

[36]  E. Blackburn,et al.  Functionally interacting telomerase RNAs in the yeast telomerase complex. , 1997, Genes & development.

[37]  S. Jackson,et al.  Identification of a Saccharomyces cerevisiae Ku80 homologue: roles in DNA double strand break rejoining and in telomeric maintenance. , 1996, Nucleic acids research.

[38]  T. Petes,et al.  The DNA-binding protein Hdf1p (a putative Ku homologue) is required for maintaining normal telomere length in Saccharomyces cerevisiae. , 1996, Nucleic acids research.

[39]  Jing-Jer Lin,et al.  An in vitro assay for saccharomyces telomerase requires EST1 , 1995, Cell.

[40]  R. S. Muir,et al.  Gene disruption with PCR products in Saccharomyces cerevisiae. , 1995, Gene.

[41]  D. Gottschling,et al.  Transcription of a yeast telomere alleviates telomere position effect without affecting chromosome stability. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Virginia A. Zakian,et al.  Loss of a yeast telomere: Arrest, recovery, and chromosome loss , 1993, Cell.

[43]  R. Wellinger,et al.  Origin activation and formation of single-strand TG1-3 tails occur sequentially in late S phase on a yeast linear plasmid , 1993, Molecular and cellular biology.

[44]  R. Wellinger,et al.  Saccharomyces telomeres acquire single-strand TG1–3 tails late in S phase , 1993, Cell.

[45]  W. L. Fangman,et al.  A position effect on the time of replication origin activation in yeast , 1992, Cell.

[46]  Barbara L. Billington,et al.  Position effect at S. cerevisiae telomeres: Reversible repression of Pol II transcription , 1990, Cell.

[47]  J. Szostak,et al.  A mutant with a defect in telomere elongation leads to senescence in yeast , 1989, Cell.

[48]  R. Sikorski,et al.  A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. , 1989, Genetics.