The semiquinone swing in the bifurcating electron transferring flavoprotein/butyryl-CoA dehydrogenase complex from Clostridium difficile

[1]  J. W. Peters,et al.  Mechanistic insights into energy conservation by flavin-based electron bifurcation. , 2017, Nature chemical biology.

[2]  U. Ermler,et al.  Ligand binding and conformational dynamics in a flavin‐based electron‐bifurcating enzyme complex revealed by Hydrogen–Deuterium Exchange Mass Spectrometry , 2016, FEBS letters.

[3]  Daniel Picot,et al.  From low- to high-potential bioenergetic chains: Thermodynamic constraints of Q-cycle function. , 2016, Biochimica et biophysica acta.

[4]  A. Seubert,et al.  Reduction of Flavodoxin by Electron Bifurcation and Sodium Ion-dependent Reoxidation by NAD+ Catalyzed by Ferredoxin-NAD+ Reductase (Rnf)* , 2016, The Journal of Biological Chemistry.

[5]  W. Buckel,et al.  Reduction of ferredoxin or oxygen by flavin‐based electron bifurcation in Megasphaera elsdenii , 2015, The FEBS Journal.

[6]  R. Thauer,et al.  Insights into Flavin-based Electron Bifurcation via the NADH-dependent Reduced Ferredoxin:NADP Oxidoreductase Structure* , 2015, The Journal of Biological Chemistry.

[7]  V. Müller,et al.  A novel mode of lactate metabolism in strictly anaerobic bacteria. , 2015, Environmental microbiology.

[8]  U. Ermler,et al.  Studies on the Mechanism of Electron Bifurcation Catalyzed by Electron Transferring Flavoprotein (Etf) and Butyryl-CoA Dehydrogenase (Bcd) of Acidaminococcus fermentans* , 2013, The Journal of Biological Chemistry.

[9]  Klaus Schulten,et al.  The mechanism of ubihydroquinone oxidation at the Qo-site of the cytochrome bc1 complex. , 2013, Biochimica et biophysica acta.

[10]  R. Thauer,et al.  Clostridium acidurici Electron-Bifurcating Formate Dehydrogenase , 2013, Applied and Environmental Microbiology.

[11]  W. Buckel,et al.  Effect of an Oxygen-Tolerant Bifurcating Butyryl Coenzyme A Dehydrogenase/Electron-Transferring Flavoprotein Complex from Clostridium difficile on Butyrate Production in Escherichia coli , 2013, Journal of bacteriology.

[12]  Kyosuke Sato,et al.  Interaction between NADH and electron-transferring flavoprotein from Megasphaera elsdenii. , 2013, Journal of biochemistry.

[13]  V. Müller,et al.  An Electron-bifurcating Caffeyl-CoA Reductase* , 2013, The Journal of Biological Chemistry.

[14]  R. Thauer,et al.  Energy conservation via electron bifurcating ferredoxin reduction and proton/Na(+) translocating ferredoxin oxidation. , 2013, Biochimica et biophysica acta.

[15]  V. Müller,et al.  A Bacterial Electron-bifurcating Hydrogenase* , 2012, The Journal of Biological Chemistry.

[16]  R. Thauer,et al.  Electron Bifurcation Involved in the Energy Metabolism of the Acetogenic Bacterium Moorella thermoacetica Growing on Glucose or H2 plus CO2 , 2012, Journal of bacteriology.

[17]  M. Russell,et al.  Redox bifurcations: Mechanisms and importance to life now, and at its origin , 2012, BioEssays : news and reviews in molecular, cellular and developmental biology.

[18]  Anne-Kristin Kaster,et al.  Coupling of ferredoxin and heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic archaea , 2011, Proceedings of the National Academy of Sciences.

[19]  V. Müller,et al.  Bacterial Na+-translocating ferredoxin:NAD+ oxidoreductase , 2010, Proceedings of the National Academy of Sciences.

[20]  R. Thauer,et al.  NADP+ Reduction with Reduced Ferredoxin and NADP+ Reduction with NADH Are Coupled via an Electron-Bifurcating Enzyme Complex in Clostridium kluyveri , 2010, Journal of bacteriology.

[21]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[22]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[23]  M. Adams,et al.  The Iron-Hydrogenase of Thermotoga maritima Utilizes Ferredoxin and NADH Synergistically: a New Perspective on Anaerobic Hydrogen Production , 2009, Journal of bacteriology.

[24]  Anne-Kristin Kaster,et al.  Methanogenic archaea: ecologically relevant differences in energy conservation , 2008, Nature Reviews Microbiology.

[25]  E. Jayamani,et al.  Energy Conservation via Electron-Transferring Flavoprotein in Anaerobic Bacteria , 2007, Journal of bacteriology.

[26]  Fuli Li,et al.  Coupled Ferredoxin and Crotonyl Coenzyme A (CoA) Reduction with NADH Catalyzed by the Butyryl-CoA Dehydrogenase/Etf Complex from Clostridium kluyveri , 2007, Journal of bacteriology.

[27]  N. Scrutton,et al.  Dynamics driving function − new insights from electron transferring flavoproteins and partner complexes , 2007, The FEBS journal.

[28]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[29]  P. Dutton,et al.  Exposing the complex III Qo semiquinone radical. , 2007, Biochimica et biophysica acta.

[30]  N. Scrutton,et al.  Electrical circuitry in biology: emerging principles from protein structure. , 2004, Current opinion in structural biology.

[31]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[32]  M. Sutcliffe,et al.  Extensive Domain Motion and Electron Transfer in the Human Electron Transferring Flavoprotein·Medium Chain Acyl-CoA Dehydrogenase Complex* , 2004, Journal of Biological Chemistry.

[33]  M. Sutcliffe,et al.  Extensive conformational sampling in a ternary electron transfer complex , 2003, Nature Structural Biology.

[34]  D. Linder,et al.  A two [4Fe-4S]-cluster-containing ferredoxin as an alternative electron donor for 2-hydroxyglutaryl-CoA dehydratase from Acidaminococcus fermentans , 2003, Archives of Microbiology.

[35]  Eckhard Bill,et al.  Adenosine triphosphate-induced electron transfer in 2-hydroxyglutaryl-CoA dehydratase from Acidaminococcus fermentans. , 2002, Biochemistry.

[36]  K. Sato,et al.  Unusually high standard redox potential of acrylyl-CoA/propionyl-CoA couple among enoyl-CoA/acyl-CoA couples: a reason for the distinct metabolic pathway of propionyl-CoA from longer acyl-CoAs. , 1999, Journal of biochemistry.

[37]  S. Mayhew The effects of pH and semiquinone formation on the oxidation-reduction potentials of flavin mononucleotide. A reappraisal. , 1999, European journal of biochemistry.

[38]  F. Frerman,et al.  Crystal structure of Paracoccus denitrificans electron transfer flavoprotein: structural and electrostatic analysis of a conserved flavin binding domain. , 1999, Biochemistry.

[39]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[40]  F. Frerman,et al.  Three-dimensional structure of human electron transfer flavoprotein to 2.1-A resolution. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[41]  S. Djordjević,et al.  Three-dimensional structure of butyryl-CoA dehydrogenase from Megasphaera elsdenii. , 1995, Biochemistry.

[42]  Kurt Warncke,et al.  Nature of biological electron transfer , 1992, Nature.

[43]  D. Hale,et al.  An acyl-coenzyme A dehydrogenase assay utilizing the ferricenium ion. , 1990, Analytical biochemistry.

[44]  R. Anderson,et al.  Energetics of the one-electron reduction steps of riboflavin, FMN and FAD to their fully reduced forms. , 1983, Biochimica et biophysica acta.

[45]  T. Bücher,et al.  Molar absorptivities of beta-NADH and beta-NADPH. , 1976, Clinical chemistry.

[46]  P. Mitchell,et al.  The protonmotive Q cycle: A general formulation , 1975, FEBS letters.

[47]  D. Cox,et al.  A general formulation , 2014 .