First-Order Axioms for Asynchrony
暂无分享,去创建一个
[1] Jean-Jacques Lévy,et al. A Calculus of Mobile Agents , 1996, CONCUR.
[2] Davide Sangiorgi,et al. On Bisimulations for the Asynchronous pi-Calculus , 1996, Theor. Comput. Sci..
[3] Mario Tokoro,et al. An Object Calculus for Asynchronous Communication , 1991, ECOOP.
[4] Robin Milner,et al. Operational and Algebraic Semantics of Concurrent Processes , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.
[5] Gérard Berry,et al. The chemical abstract machine , 1989, POPL '90.
[6] Benjamin C. Pierce,et al. Decoding Choice Encodings , 1999 .
[7] Catuscia Palamidessi,et al. Comparing the expressive power of the synchronous and the asynchronous π-calculus , 1998, POPL '97.
[8] Samson Abramsky. Interaction categories and communicating sequential processes , 1994 .
[9] Marek Antoni Bednarczyk,et al. Categories of asynchronous systems , 1987 .
[10] Cédric Fournet,et al. The reflexive CHAM and the join-calculus , 1996, POPL '96.
[11] Gérard Boudol,et al. Asynchrony and the Pi-calculus , 1992 .
[12] Nancy A. Lynch,et al. A Proof of the Kahn Principle for Input/Output Automata , 1989, Inf. Comput..
[13] M. W. Shields. Concurrent Machines , 1985, Comput. J..