Membrane protein structure determination — The next generation

The field of Membrane Protein Structural Biology has grown significantly since its first landmark in 1985 with the first three-dimensional atomic resolution structure of a membrane protein. Nearly twenty-six years later, the crystal structure of the beta2 adrenergic receptor in complex with G protein has contributed to another landmark in the field leading to the 2012 Nobel Prize in Chemistry. At present, more than 350 unique membrane protein structures solved by X-ray crystallography (http://blanco.biomol.uci.edu/mpstruc/exp/list, Stephen White Lab at UC Irvine) are available in the Protein Data Bank. The advent of genomics and proteomics initiatives combined with high-throughput technologies, such as automation, miniaturization, integration and third-generation synchrotrons, has enhanced membrane protein structure determination rate. X-ray crystallography is still the only method capable of providing detailed information on how ligands, cofactors, and ions interact with proteins, and is therefore a powerful tool in biochemistry and drug discovery. Yet the growth of membrane protein crystals suitable for X-ray diffraction studies amazingly remains a fine art and a major bottleneck in the field. It is often necessary to apply as many innovative approaches as possible. In this review we draw attention to the latest methods and strategies for the production of suitable crystals for membrane protein structure determination. In addition we also highlight the impact that third-generation synchrotron radiation has made in the field, summarizing the latest strategies used at synchrotron beamlines for screening and data collection from such demanding crystals. This article is part of a Special Issue entitled: Structural and biophysical characterisation of membrane protein-ligand binding.

[1]  Martin Caffrey,et al.  Membrane protein structure determination using crystallography and lipidic mesophases: recent advances and successes. , 2012, Biochemistry.

[2]  Giovanna Ghirlanda,et al.  Membrane Proteins , 2013, Methods in Molecular Biology.

[3]  A. Kuglstatter,et al.  Acoustic matrix microseeding: improving protein crystal growth with minimal chemical bias. , 2010, Acta crystallographica. Section D, Biological crystallography.

[4]  D. Linke Detergents: an overview. , 2009, Methods in enzymology.

[5]  V. Cherezov,et al.  Crystallization screens: compatibility with the lipidic cubic phase for in meso crystallization of membrane proteins. , 2001, Biophysical journal.

[6]  R. A. Robbins,et al.  Tandem facial amphiphiles for membrane protein stabilization. , 2010, Journal of the American Chemical Society.

[7]  E. Padan,et al.  Crucial steps in the structure determination of the Na+/H+ antiporter NhaA in its native conformation. , 2006, Journal of molecular biology.

[8]  R. Viola,et al.  Detergent selection for enhanced extraction of membrane proteins. , 2012, Protein expression and purification.

[9]  Masaki Yamamoto,et al.  Micro-crystallography comes of age. , 2012, Current opinion in structural biology.

[10]  R. Neutze,et al.  Lipidic sponge phase crystallization of membrane proteins. , 2006, Journal of molecular biology.

[11]  D. Timm,et al.  Macromolecular crystal annealing: evaluation of techniques and variables. , 1999, Acta crystallographica. Section D, Biological crystallography.

[12]  W. Catterall,et al.  THE CRYSTAL STRUCTURE OF A VOLTAGE-GATED SODIUM CHANNEL , 2011, Nature.

[13]  J. Rosenbusch,et al.  Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Florent Cipriani,et al.  Inducing phase changes in crystals of macromolecules: status and perspectives for controlled crystal dehydration. , 2011, Journal of structural biology.

[15]  G. Friso,et al.  A scalable, GFP‐based pipeline for membrane protein overexpression screening and purification , 2005, Protein science : a publication of the Protein Society.

[16]  G. Privé,et al.  Detergents for the stabilization and crystallization of membrane proteins. , 2007, Methods.

[17]  John Davey,et al.  G-Protein-Coupled Receptors: New Approaches to Maximise the Impact of GPCRs in Drug Discovery , 2004, Expert opinion on therapeutic targets.

[18]  Georg Weidenspointner,et al.  Femtosecond X-ray protein nanocrystallography , 2011, Nature.

[19]  M. Perutz The composition and swelling properties of haemoglobin crystals , 1946 .

[20]  J. Newman A review of techniques for maximizing diffraction from a protein crystal in stilla. , 2006, Acta crystallographica. Section D, Biological crystallography.

[21]  D. Oesterhelt,et al.  Orthorhombic crystal form of bacteriorhodopsin nucleated on benzamidine diffracting to 3.6 A resolution. , 1993, Journal of molecular biology.

[22]  C. Tate,et al.  Transferability of thermostabilizing mutations between β-adrenergic receptors , 2009, Molecular membrane biology.

[23]  F Cipriani,et al.  Protein microcrystals and the design of a microdiffractometer: current experience and plans at EMBL and ESRF/ID13. , 1999, Acta crystallographica. Section D, Biological crystallography.

[24]  S. Rasmussen,et al.  Crystal Structure of the β2Adrenergic Receptor-Gs protein complex , 2011, Nature.

[25]  R. Templer Thermodynamic and theoretical aspects of cubic mesophases in nature and biological amphiphiles , 1998 .

[26]  J. Deisenhofer,et al.  Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3Å resolution , 1985, Nature.

[27]  C. Abergel Spectacular improvement of X-ray diffraction through fast desiccation of protein crystals. , 2004, Acta crystallographica. Section D, Biological crystallography.

[28]  T. Blundell,et al.  Structural biology in fragment-based drug design. , 2010, Current opinion in structural biology.

[29]  Jouhyun Jeon,et al.  Bioinformatic approaches for the structure and function of membrane proteins. , 2009, BMB reports.

[30]  Samuel Wagner,et al.  Tuning Escherichia coli for membrane protein overexpression , 2008, Proceedings of the National Academy of Sciences.

[31]  S. Iwata,et al.  Crystal structure of a bacterial homologue of the bile acid sodium symporter ASBT , 2011, Nature.

[32]  R. Ujwal,et al.  High-throughput crystallization of membrane proteins using the lipidic bicelle method. , 2012, Journal of visualized experiments : JoVE.

[33]  B. Schmitt,et al.  Performance of single-photon-counting PILATUS detector modules , 2009, Journal of synchrotron radiation.

[34]  Gwyndaf Evans,et al.  In situ macromolecular crystallography using microbeams , 2012, Acta crystallographica. Section D, Biological crystallography.

[35]  Yoko Shibata,et al.  Conformational thermostabilization of the β1-adrenergic receptor in a detergent-resistant form , 2008, Proceedings of the National Academy of Sciences.

[36]  M. Bogan X-ray free electron lasers motivate bioanalytical characterization of protein nanocrystals: serial femtosecond crystallography. , 2013, Analytical chemistry.

[37]  B. Schobert,et al.  Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore , 2008, Proceedings of the National Academy of Sciences.

[38]  Daniel Scheibe,et al.  A fully integrated protein crystallization platform for small-molecule drug discovery. , 2003, Journal of structural biology.

[39]  C. Sanders,et al.  Bicelles: a model membrane system for all seasons? , 1998, Structure.

[40]  L. Greenspan Humidity Fixed Points of Binary Saturated Aqueous Solutions , 1977, Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry.

[41]  B. Wallace,et al.  Structure of a bacterial voltage-gated sodium channel pore reveals mechanisms of opening and closing , 2012, Nature Communications.

[42]  Yvonne Jones,et al.  High resolution structures of HIV-1 RT from four RT–inhibitor complexes , 1995, Nature Structural Biology.

[43]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[44]  Paul A. Wiggins,et al.  Emerging roles for lipids in shaping membrane-protein function , 2009, Nature.

[45]  J. Einstein,et al.  Insulin. Some shrinkage stages of sulfate and citrate crystals , 1962 .

[46]  Sergey V. Melnikov,et al.  The structure of the eukaryotic ribosome at 3.0 angstrom resolution. , 2011 .

[47]  H Luecke,et al.  Structure of bacteriorhodopsin at 1.55 A resolution. , 1999, Journal of molecular biology.

[48]  Rebecca Page,et al.  Crystallization data mining in structural genomics: using positive and negative results to optimize protein crystallization screens. , 2004, Methods.

[49]  L. Guan,et al.  Manipulating phospholipids for crystallization of membrane transport proteins , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Garth J Simpson,et al.  Nonlinear optical imaging of integral membrane protein crystals in lipidic mesophases. , 2010, Analytical chemistry.

[51]  Jeremy L. Praissman,et al.  Life in the fast lane for protein crystallization and X-ray crystallography. , 2005, Progress in biophysics and molecular biology.

[52]  L. Johnson,et al.  Macromolecular crystallography at synchrotron radiation sources: current status and future developments , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[53]  V. Cherezov,et al.  Room to move: crystallizing membrane proteins in swollen lipidic mesophases. , 2006, Journal of molecular biology.

[54]  Jennifer L. Martin,et al.  Post-crystallization treatments for improving diffraction quality of protein crystals. , 2005, Acta crystallographica. Section D, Biological crystallography.

[55]  G. Evans,et al.  Macromolecular microcrystallography , 2011 .

[56]  D. Stuart,et al.  Continuous and discontinuous changes in the unit cell of HIV-1 reverse transcriptase crystals on dehydration. , 1998, Acta crystallographica. Section D, Biological crystallography.

[57]  Paul Curnow,et al.  Membrane proteins, lipids and detergents: not just a soap opera. , 2004, Biochimica et biophysica acta.

[58]  H Toyokawa,et al.  The PILATUS 1M detector. , 2006, Journal of synchrotron radiation.

[59]  S. Orlowski,et al.  Detergent structure and associated lipid as determinants in the stabilization of solubilized Ca2+-ATPase from sarcoplasmic reticulum. , 1989, The Journal of biological chemistry.

[60]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[61]  R. Stroud,et al.  Overexpression and purification of integral membrane proteins in yeast. , 2010, Methods in enzymology.

[62]  D. Slotboom,et al.  The yeast mitochondrial ADP/ATP carrier functions as a monomer in mitochondrial membranes , 2007, Proceedings of the National Academy of Sciences.

[63]  H. Schiöth,et al.  The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. , 2003, Molecular pharmacology.

[64]  M. Burghammer,et al.  Crystal structure of the human β2 adrenergic G-protein-coupled receptor , 2007, Nature.

[65]  Sergey Melnikov,et al.  The Structure of the Eukaryotic Ribosome at 3.0 Å Resolution , 2011, Science.

[66]  Peipei Ping,et al.  The crystal structure of mouse VDAC1 at 2.3 Å resolution reveals mechanistic insights into metabolite gating , 2008, Proceedings of the National Academy of Sciences.

[67]  Manfred Auer,et al.  Structure of fumarate reductase from Wolinella succinogenes at 2.2 Å resolution , 1999, Nature.

[68]  Florent Cipriani,et al.  Improving diffraction by humidity control: a novel device compatible with X-ray beamlines. , 2009, Acta crystallographica. Section D, Biological crystallography.

[69]  J. Ramachandran,et al.  Structure and Function of G Protein Coupled Receptors , 1990, Pharmaceutical Research.

[70]  R. Templer,et al.  Phosphatidylcholine-fatty acid membranes: effects of headgroup hydration on the phase behaviour and structural parameters of the gel and inverse hexagonal (H(II)) phases. , 1997, Biochimica et biophysica acta.

[71]  W. Welte,et al.  Detergent organisation in solutions and in crystals of membrane proteins. , 1994, Biophysical chemistry.

[72]  R. Stevens,et al.  Designing facial amphiphiles for the stabilization of integral membrane proteins. , 2007, Angewandte Chemie.

[73]  C. Mattia,et al.  Increasing the X-ray Diffraction Power of Protein Crystals by Dehydration: The Case of Bovine Serum Albumin and a Survey of Literature Data , 2012, International journal of molecular sciences.

[74]  E. Serebryany,et al.  Artificial membrane-like environments for in vitro studies of purified G-protein coupled receptors. , 2012, Biochimica et biophysica acta.

[75]  J. H. Strauss,et al.  Structure of dengue virus: implications for flavivirus organization, maturation, and fusion , 2002 .

[76]  H. Bartels,et al.  Characterization and preliminary attempts for derivatization of crystals of large ribosomal subunits from Haloarcula marismortui diffracting to 3 A resolution. , 1991, Journal of molecular biology.

[77]  N. Chayen,et al.  Random Microseeding: A Theoretical and Practical Exploration of Seed Stability and Seeding Techniques for Successful Protein Crystallization , 2011 .

[78]  W. Welte,et al.  The influence of heptane‐1,2,3‐triol on the size and shape of LDAO micelles Implications for the crystallisation of membrane proteins , 1991, FEBS letters.

[79]  E. Landau,et al.  Crystallization of transmembrane proteins in cubo: mechanisms of crystal growth and defect formation. , 2004, Journal of molecular biology.

[80]  S. Iwata,et al.  Architecture of Succinate Dehydrogenase and Reactive Oxygen Species Generation , 2003, Science.

[81]  D. Drew,et al.  Optimizing membrane protein overexpression in the Escherichia coli strain Lemo21(DE3). , 2012, Journal of molecular biology.

[82]  So Iwata,et al.  Rationalizing α‐helical membrane protein crystallization , 2008, Protein science : a publication of the Protein Society.

[83]  J. Einstein,et al.  INSULIN-GROSS MOLECULAR STRUCTURE: TRIAL-AND-ERROR STUDIES USING TRANSFORM AND PATTERSON FUNCTION TECHNIQUES. , 1962, Proceedings of the National Academy of Sciences of the United States of America.

[84]  H. Arai The relationship between the cloud points and the properties of micelles of nonionic detergents , 1967 .

[85]  Florent Cipriani,et al.  C3D: a program for the automated centring of cryocooled crystals. , 2006, Acta crystallographica. Section D, Biological crystallography.

[86]  D. Linke Chapter 34 Detergents , 2009 .

[87]  J. Møller,et al.  Interaction of membrane proteins and lipids with solubilizing detergents. , 2000, Biochimica et biophysica acta.

[88]  G. Lindblom,et al.  Cubic phases and isotropic structures formed by membrane lipids — possible biological relevance , 1989 .

[89]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[90]  E. Pebay-Peyroula,et al.  X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. , 1997, Science.

[91]  Zbigniew Dauter,et al.  Impact of synchrotron radiation on macromolecular crystallography: a personal view , 2010, Journal of synchrotron radiation.

[92]  S Michael Soltis,et al.  Diffraction-based automated crystal centering. , 2007, Journal of synchrotron radiation.

[93]  C. Tate,et al.  Engineering G protein-coupled receptors to facilitate their structure determination. , 2009, Current opinion in structural biology.

[94]  K. Vinothkumar Structure of Rhomboid Protease in a Lipid Environment , 2011, Journal of molecular biology.

[95]  Joanne I. Yeh,et al.  A flash-annealing technique to improve diffraction limits and lower mosaicity in crystals of glycerol kinase. , 1998, Acta crystallographica. Section D, Biological crystallography.

[96]  Thomas Earnest,et al.  Automation of X-ray crystallography , 2000, Nature Structural Biology.

[97]  R. Esnouf,et al.  Crystals of HIV-1 reverse transcriptase diffracting to 2.2 A resolution. , 1994, Journal of molecular biology.

[98]  C. Tate,et al.  Overexpression of mammalian integral membrane proteins for structural studies , 2001, FEBS letters.

[99]  Aashish Manglik,et al.  Structure of the δ-opioid receptor bound to naltrindole , 2012, Nature.

[100]  S. Newstead,et al.  Current trends in α‐helical membrane protein crystallization: An update , 2012, Protein science : a publication of the Protein Society.

[101]  D. Oesterhelt,et al.  Structure of the light-driven chloride pump halorhodopsin at 1.8 A resolution. , 2000, Science.

[102]  Martin Caffrey,et al.  Membrane protein crystallization in meso: lipid type-tailoring of the cubic phase. , 2002, Biophysical journal.

[103]  G. DeTitta,et al.  Purification of transmembrane proteins from Saccharomyces cerevisiae for X-ray crystallography. , 2010, Protein expression and purification.

[104]  A. Goldman,et al.  The Structure and Catalytic Cycle of a Sodium-Pumping Pyrophosphatase , 2012, Science.

[105]  G. Heijne,et al.  Genome‐wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms , 1998, Protein science : a publication of the Protein Society.

[106]  Harren Jhoti,et al.  High-throughput crystallography for lead discovery in drug design , 2002, Nature Reviews Drug Discovery.

[107]  Daniel Picot,et al.  Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins , 2010, Nature Methods.

[108]  A. D'arcy,et al.  An automated microseed matrix-screening method for protein crystallization. , 2007, Acta crystallographica. Section D, Biological crystallography.

[109]  J. Rosenbusch,et al.  Crystallization in cubo: general applicability to membrane proteins. , 2000, Acta crystallographica. Section D, Biological crystallography.

[110]  E. Travis Littledike,et al.  Insulin , 1923, The Indian medical gazette.

[111]  Graeme Winter,et al.  Automated data collection for macromolecular crystallography. , 2011, Methods.

[112]  J. Bowie,et al.  Crystallization of bacteriorhodopsin from bicelle formulations at room temperature , 2005, Protein science : a publication of the Protein Society.

[113]  Petra Fromme,et al.  Improved isolation and crystallization of photosystem I for structural analysis , 1998 .

[114]  Y. Ashani,et al.  Highly reactive impurities in Triton X-100 and Brij 35: partial characterization and removal. , 1980, Analytical biochemistry.

[115]  Jeffrey R. Deschamps,et al.  The role of crystallography in drug design , 2005, The AAPS Journal.

[116]  J. Hajdu,et al.  Protein crystallography in a vapour stream: data collection, reaction initiation and intermediate trapping in naked hydrated protein crystals , 2002 .

[117]  Elspeth F Garman,et al.  Experimental determination of the radiation dose limit for cryocooled protein crystals. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[118]  E. Garman,et al.  Progress in research into radiation damage in cryo-cooled macromolecular crystals. , 2007, Journal of synchrotron radiation.

[119]  J. Bowie,et al.  Bicelle crystallization: a new method for crystallizing membrane proteins yields a monomeric bacteriorhodopsin structure. , 2002, Journal of molecular biology.

[120]  J. Hajdu,et al.  Potential for biomolecular imaging with femtosecond X-ray pulses , 2000, Nature.

[121]  C. Wada,et al.  Expression and purification of F-plasmid RepE and preliminary X-ray crystallographic study of its complex with operator DNA. , 2007, Acta crystallographica. Section F, Structural biology and crystallization communications.

[122]  H. Hope Cryocrystallography of biological macromolecules: a generally applicable method. , 1988, Acta crystallographica. Section B, Structural science.

[123]  J. Bowie,et al.  Crystallizing membrane proteins using lipidic bicelles. , 2011, Methods.

[124]  D. Drew,et al.  Optimization of membrane protein overexpression and purification using GFP fusions , 2006, Nature Methods.

[125]  M. Caffrey,et al.  The neutral area surface of the cubic mesophase: location and properties. , 1994, Biophysical journal.

[126]  J. Rosenbusch,et al.  Molecular mechanism for the crystallization of bacteriorhodopsin in lipidic cubic phases , 2001, FEBS letters.

[127]  Joshua M. Kunken,et al.  Fusion partner toolchest for the stabilization and crystallization of G protein-coupled receptors. , 2012, Structure.

[128]  H. Michel,et al.  Crystallization of membrane proteins. , 1983, Current opinion in structural biology.

[129]  F Cipriani,et al.  Automation of sample mounting for macromolecular crystallography. , 2006, Acta crystallographica. Section D, Biological crystallography.

[130]  Gwyndaf Evans,et al.  High-speed crystal detection and characterization using a fast-readout detector , 2010, Acta crystallographica. Section D, Biological crystallography.

[131]  M. Caffrey,et al.  The curvature elastic-energy function of the lipid–water cubic mesophase , 1994, Nature.

[132]  B. Matthews,et al.  The role of solvent transport in cryo-annealing of macromolecular crystals. , 2004, Acta crystallographica. Section D, Biological crystallography.

[133]  G. Terstappen,et al.  In silico research in drug discovery. , 2001, Trends in pharmacological sciences.

[134]  R. Stevens,et al.  Global Efforts in Structural Genomics , 2001, Science.

[135]  Jan Steyaert,et al.  Nanobody stabilization of G protein-coupled receptor conformational states. , 2011, Current opinion in structural biology.