MYBL2 regulates de novo purine synthesis by transcriptionally activating IMPDH1 in hepatocellular carcinoma cells

[1]  Minoru Kanehisa,et al.  KEGG: integrating viruses and cellular organisms , 2020, Nucleic Acids Res..

[2]  R. Deberardinis,et al.  Guanosine triphosphate links MYC-dependent metabolic and ribosome programs in small cell lung cancer. , 2020, The Journal of clinical investigation.

[3]  Minoru Kanehisa,et al.  Toward understanding the origin and evolution of cellular organisms , 2019, Protein science : a publication of the Protein Society.

[4]  D. Calvisi,et al.  A functional mammalian target of rapamycin complex 1 signaling is indispensable for c‐Myc‐driven hepatocarcinogenesis , 2017, Hepatology.

[5]  R. Abraham,et al.  Purine Nucleotide Availability Regulates mTORC1 Activity through the Rheb GTPase. , 2017, Cell reports.

[6]  R. Chen,et al.  TIP30 regulates lipid metabolism in hepatocellular carcinoma by regulating SREBP1 through the Akt/mTOR signaling pathway , 2017, Oncogenesis.

[7]  X. Chen,et al.  Critical role of Myc activation in mouse hepatocarcinogenesis induced by the activation of AKT and RAS pathways , 2017, Oncogene.

[8]  L. Yao,et al.  NDRG2 overexpression suppresses hepatoma cells survival during metabolic stress through disturbing the activation of fatty acid oxidation. , 2017, Biochemical and biophysical research communications.

[9]  Matthew G. Vander Heiden,et al.  Understanding the Intersections between Metabolism and Cancer Biology , 2017, Cell.

[10]  R. Schwabe,et al.  The Role of Cancer-Associated Fibroblasts and Fibrosis in Liver Cancer. , 2017, Annual review of pathology.

[11]  J. Asara,et al.  The Lipid Kinase PI5P4Kβ Is an Intracellular GTP Sensor for Metabolism and Tumorigenesis. , 2016, Molecular cell.

[12]  E. Bugianesi,et al.  Liver Cancer: Connections with Obesity, Fatty Liver, and Cirrhosis. , 2016, Annual review of medicine.

[13]  N. Pavlova,et al.  The Emerging Hallmarks of Cancer Metabolism. , 2016, Cell metabolism.

[14]  A. Satyanarayana,et al.  Inhibitor of differentiation 1 transcription factor promotes metabolic reprogramming in hepatocellular carcinoma cells , 2016, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[15]  J. Revuelta,et al.  Guanine nucleotide binding to the Bateman domain mediates the allosteric inhibition of eukaryotic IMP dehydrogenases , 2015, Nature Communications.

[16]  Hong Zhang,et al.  mTORC1 Up-Regulates GP73 to Promote Proliferation and Migration of Hepatocellular Carcinoma Cells and Growth of Xenograft Tumors in Mice. , 2015, Gastroenterology.

[17]  Hanhua Cheng,et al.  MYBL2 guides autophagy suppressor VDAC2 in the developing ovary to inhibit autophagy through a complex of VDAC2-BECN1-BCL2L1 in mammals , 2015, Autophagy.

[18]  A. Jemal,et al.  Global cancer statistics, 2012 , 2015, CA: a cancer journal for clinicians.

[19]  Rugang Zhang,et al.  Nucleotide metabolism, oncogene-induced senescence and cancer. , 2015, Cancer letters.

[20]  J. Rappsilber,et al.  Cyclin F suppresses B-Myb activity to promote cell cycle checkpoint control , 2015, Nature Communications.

[21]  Xiang Zhou,et al.  The role of IMP dehydrogenase 2 in Inauhzin-induced ribosomal stress , 2014, eLife.

[22]  Neville E. Sanjana,et al.  Improved vectors and genome-wide libraries for CRISPR screening , 2014, Nature Methods.

[23]  Timothy E. Reddy,et al.  Distinct properties of cell-type-specific and shared transcription factor binding sites. , 2013, Molecular cell.

[24]  M. Gorospe,et al.  Long Noncoding RNA MALAT1 Controls Cell Cycle Progression by Regulating the Expression of Oncogenic Transcription Factor B-MYB , 2013, PLoS genetics.

[25]  D. DiMaio,et al.  B-Myb, cancer, senescence, and microRNAs. , 2011, Cancer research.

[26]  D. Calvisi,et al.  Mybl2 expression is under genetic control and contributes to determine a hepatocellular carcinoma susceptible phenotype. , 2011, Journal of hepatology.

[27]  D. Calvisi,et al.  Activation of v‐Myb avian myeloblastosis viral oncogene homolog‐like2 (MYBL2)‐LIN9 complex contributes to human hepatocarcinogenesis and identifies a subset of hepatocellular carcinoma with mutant p53 , 2011, Hepatology.

[28]  J. Steitz,et al.  miR-29 and miR-30 regulate B-Myb expression during cellular senescence , 2010, Proceedings of the National Academy of Sciences.

[29]  J. Blenis,et al.  Molecular mechanisms of mTOR-mediated translational control , 2009, Nature Reviews Molecular Cell Biology.

[30]  Anthony Mancuso,et al.  Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction , 2008, Proceedings of the National Academy of Sciences.

[31]  J. Inazawa,et al.  Activation of B‐Myb by E2F1 in hepatocellular carcinoma , 2008, Hepatology research : the official journal of the Japan Society of Hepatology.

[32]  Ralph J Deberardinis,et al.  Brick by brick: metabolism and tumor cell growth. , 2008, Current opinion in genetics & development.

[33]  L. Bernd,et al.  Prognostic significance of drug-regulated genes in high-grade osteosarcoma , 2007, Modern Pathology.

[34]  Jun O. Liu,et al.  Identification of type 1 inosine monophosphate dehydrogenase as an antiangiogenic drug target. , 2006, Journal of medicinal chemistry.

[35]  Y. Rao,et al.  De Novo GMP Synthesis Is Required for Axon Guidance in Drosophila , 2006, Genetics.

[36]  R. Yazdanparast,et al.  3-Hydrogenkwadaphnin targets inosine 5'-monophosphate dehydrogenase and triggers post-G1 arrest apoptosis in human leukemia cell lines. , 2005, The international journal of biochemistry & cell biology.

[37]  A. Alavi,et al.  Akt Stimulates Aerobic Glycolysis in Cancer Cells , 2004, Cancer Research.

[38]  A. Allison,et al.  Mycophenolate mofetil and its mechanisms of action. , 2000, Immunopharmacology.

[39]  M. Grusch,et al.  Consequences of IMP Dehydrogenase Inhibition, and its Relationship to Cancer and Apoptosis , 1999, Current Medicinal Chemistry.

[40]  J. Mangum,et al.  Inosine monophosphate dehydrogenase and myeloid cell maturation. , 1987, Blood.

[41]  R. Jackson,et al.  Partial purification, properties and regulation of inosine 5'phosphate dehydrogenase in normal and malignant rat tissues. , 1977, The Biochemical journal.

[42]  R. Jackson,et al.  IMP dehydrogenase, an enzyme linked with proliferation and malignancy , 1975, Nature.

[43]  A. Jemal,et al.  Global cancer statistics , 2011, CA: a cancer journal for clinicians.

[44]  Sonja B. Braun-Sand,et al.  Inosine monophosphate dehydrogenase as a target for antiviral, anticancer, antimicrobial and immunosuppressive therapeutics. , 2010, Future medicinal chemistry.

[45]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[46]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..

[47]  D. Woodfield Hepatocellular carcinoma. , 1986, The New Zealand medical journal.

[48]  M. Wintzerith,et al.  [Comparative study of free uridylic nucleotides in the normal liver, the regenerating liver and in the Zajdela hepatoma]. , 1962, Comptes rendus des seances de la Societe de biologie et de ses filiales.