Convex aggregative modelling of infinite memory nonlinear systems

ABSTRACT The convex aggregation technique is applied for modelling general class of nonlinear systems with unknown structure and infinite memory. The finite sample size properties of the algorithm are formally established and compared to the standard least-squares counterpart of the method. The proposed algorithm demonstrates its advantages when the a-priori knowledge and the measurement data are both scarce, that is, when the information about the actual system structure is unknown or uncertain and the measurement set is small and disturbed by a noise. Numerical experiments illustrate application and practical benefits of the method for various nonlinear systems.

[1]  Leon O. Chua,et al.  Fading memory and the problem of approximating nonlinear operators with volterra series , 1985 .

[2]  Vasilis Z. Marmarelis,et al.  Nonlinear Dynamic Modeling of Physiological Systems: Marmarelis/Nonlinear , 2004 .

[3]  I. Litvinchev,et al.  Aggregation in Large-Scale Optimization , 2003 .

[4]  Lennart Ljung,et al.  Regularization strategies for nonparametric system identification , 2013, 52nd IEEE Conference on Decision and Control.

[5]  Przemyslaw Sliwinski,et al.  Aggregative Modeling of Nonlinear Systems , 2015, IEEE Signal Processing Letters.

[6]  Mei Wang,et al.  Model Combination for Support Vector Regression via Regularization Path , 2012, PRICAI.

[7]  Xiaotong Shen,et al.  Optimal Model Assessment, Selection, and Combination , 2006 .

[8]  E. Bai,et al.  Block Oriented Nonlinear System Identification , 2010 .

[9]  Grzegorz Mzyk,et al.  Combined Parametric-Nonparametric Identification of Block-Oriented Systems , 2013 .

[10]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[11]  Tokunbo Ogunfunmi,et al.  Adaptive Nonlinear System Identification: The Volterra and Wiener Model Approaches , 2007 .

[12]  W. Greblicki,et al.  Nonparametric system identification , 2008 .

[13]  David T. Westwick,et al.  Identification of Nonlinear Physiological Systems: Westwick/Identification of Nonlinear Physiological Systems , 2005 .

[14]  A. Juditsky,et al.  Functional aggregation for nonparametric regression , 2000 .

[15]  Rik Pintelon,et al.  System Identification: A Frequency Domain Approach , 2012 .

[16]  Alexandre B. Tsybakov,et al.  Optimal Rates of Aggregation , 2003, COLT.

[17]  Lennart Ljung,et al.  System Identification Via Sparse Multiple Kernel-Based Regularization Using Sequential Convex Optimization Techniques , 2014, IEEE Transactions on Automatic Control.

[18]  Yuhong Yang REGRESSION WITH MULTIPLE CANDIDATE MODELS: SELECTING OR MIXING? , 1999 .

[19]  David T. Westwick,et al.  Identification of nonlinear physiological systems , 2003 .

[20]  Yuhong Yang Mixing Strategies for Density Estimation , 2000 .

[21]  Keith R. Godfrey,et al.  Analysis of Best Linear Approximation of a Wiener–Hammerstein System for Arbitrary Amplitude Distributions , 2012, IEEE Transactions on Instrumentation and Measurement.

[22]  Vasilis Z. Marmarelis,et al.  Nonlinear Dynamic Modeling of Physiological Systems , 2004 .

[23]  Arkadi Nemirovski,et al.  Topics in Non-Parametric Statistics , 2000 .

[24]  Yves Rolain,et al.  Identification of Wiener-Hammerstein systems by a nonparametric separation of the best linear approximation , 2014, Autom..

[25]  J. Voros Identification of Hammerstein systems with time-varying piecewise-linear characteristics , 2005, IEEE Transactions on Circuits and Systems II: Express Briefs.

[26]  Tokunbo Ogunfunmi,et al.  Adaptive Nonlinear System Identification , 2007 .