Universal ε-approximators for integrals
暂无分享,去创建一个
[1] D. Hilbert. Über die Darstellung definiter Formen als Summe von Formenquadraten , 1888 .
[2] de Ng Dick Bruijn. A combinatorial problem , 1946 .
[3] J. Miller. Numerical Analysis , 1966, Nature.
[4] Vladimir Vapnik,et al. Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .
[5] Norbert Sauer,et al. On the Density of Families of Sets , 1972, J. Comb. Theory A.
[6] S. Shelah. A combinatorial problem; stability and order for models and theories in infinitary languages. , 1972 .
[7] R. Dudley. Metric Entropy of Some Classes of Sets with Differentiable Boundaries , 1974 .
[8] Branko Grünbaum,et al. Venn Diagrams and Independent Families of Sets. , 1975 .
[9] D. Pollard. Convergence of stochastic processes , 1984 .
[10] David Haussler,et al. Epsilon-nets and simplex range queries , 1986, SCG '86.
[11] David Haussler,et al. ɛ-nets and simplex range queries , 1987, Discret. Comput. Geom..
[12] Vladimir Vapnik,et al. Inductive principles of the search for empirical dependences (methods based on weak convergence of probability measures) , 1989, COLT '89.
[13] David Haussler,et al. Learnability and the Vapnik-Chervonenkis dimension , 1989, JACM.
[14] R. Dudley,et al. Uniform and universal Glivenko-Cantelli classes , 1991 .
[15] David Haussler,et al. Decision Theoretic Generalizations of the PAC Model for Neural Net and Other Learning Applications , 1992, Inf. Comput..
[16] Daniel Q. Naiman,et al. Independent collections of translates of boxes and a conjecture due to Grünbaum , 1993, Discret. Comput. Geom..
[17] Robert E. Schapire,et al. Efficient Distribution-Free Learning of Probabilistic , 1994 .
[18] Philip M. Long,et al. Characterizations of Learnability for Classes of {0, ..., n}-Valued Functions , 1995, J. Comput. Syst. Sci..
[19] Philip M. Long,et al. Fat-shattering and the learnability of real-valued functions , 1994, COLT '94.
[20] Joseph O'Rourke,et al. Handbook of Discrete and Computational Geometry, Second Edition , 1997 .
[21] Gert Vegter,et al. In handbook of discrete and computational geometry , 1997 .
[22] Noga Alon,et al. Scale-sensitive dimensions, uniform convergence, and learnability , 1997, JACM.
[23] Claire Mathieu,et al. A Randomized Approximation Scheme for Metric MAX-CUT , 1998, FOCS.
[24] Jon M. Kleinberg,et al. Segmentation problems , 2004, JACM.
[25] Philip M. Long,et al. Prediction, Learning, Uniform Convergence, and Scale-Sensitive Dimensions , 1998, J. Comput. Syst. Sci..
[26] Bernard Chazelle,et al. The Discrepancy Method , 1998, ISAAC.
[27] Noga Alon,et al. On Two Segmentation Problems , 1999, J. Algorithms.
[28] Leonard J. Schulman,et al. Clustering for Edge-Cost Minimization , 1999, Electron. Colloquium Comput. Complex..
[29] Jiri Matousek,et al. Lectures on discrete geometry , 2002, Graduate texts in mathematics.
[30] Michelle Effros,et al. Deterministic clustering with data nets , 2004, Electron. Colloquium Comput. Complex..
[31] Sariel Har-Peled,et al. Coresets for $k$-Means and $k$-Median Clustering and their Applications , 2018, STOC 2004.
[32] Sariel Har-Peled,et al. Smaller Coresets for k-Median and k-Means Clustering , 2005, SCG.
[33] B. K. Natarajan. On Learning Sets and Functions , 1989, Machine Learning.
[34] Sariel Har-Peled,et al. Coresets for Discrete Integration and Clustering , 2006, FSTTCS.
[35] Michael Langberg,et al. Contraction and Expansion of Convex Sets , 2007, CCCG.
[36] Kasturi R. Varadarajan,et al. Geometric Approximation via Coresets , 2007 .
[37] Dan Feldman,et al. A PTAS for k-means clustering based on weak coresets , 2007, SCG '07.
[38] Ke Chen,et al. On Coresets for k-Median and k-Means Clustering in Metric and Euclidean Spaces and Their Applications , 2009, SIAM J. Comput..
[39] Márton Naszódi,et al. On the transversal number and VC-dimension of families of positive homothets of a convex body , 2009, Discret. Math..