Heterogeneous Coordination Environment and Unusual Self-Assembly of Ionic Aggregates in a Model Ionomeric Elastomer: Effect of Curative Systems

[1]  P. Iedema,et al.  Evolution of Zinc Carboxylate Species in Oil Paint Ionomers , 2020, ACS Applied Polymer Materials.

[2]  Dávid Kun,et al.  The role of ionic clusters in the determination of the properties of partially neutralized ethylene-acrylic acid ionomers , 2020 .

[3]  M. Saeb,et al.  Microstructure and Mechanical Properties of Carboxylated Nitrile Butadiene Rubber/Epoxy/XNBR-grafted Halloysite Nanotubes Nanocomposites , 2020, Polymers.

[4]  R. Register Morphology and Structure–Property Relationships in Random Ionomers: Two Foundational Articles from Macromolecules , 2020 .

[5]  H. Winter,et al.  Modifying the Structure and Dynamics of Ionomers through Counterion Sterics , 2020 .

[6]  Y. Ikeda,et al.  Effect of fatty acids on the accelerated sulfur vulcanization of rubber by active zinc/carboxylate complexes , 2020, RSC advances.

[7]  Han Qin,et al.  Improved dielectric and actuated performance of thermoplastic polyurethane by blending with XNBR as macromolecular dielectrics , 2019, Polymer.

[8]  Y. Ikeda,et al.  Roles of Dinuclear Bridging Bidentate Zinc/Stearate Complexes in Sulfur Cross-Linking of Isoprene Rubber , 2019, Organometallics.

[9]  H. Winter,et al.  Progression of the Morphology in Random Ionomers Containing Bulky Ammonium Counterions , 2018, Macromolecules.

[10]  G. Heinrich,et al.  Tuning the Properties and Self-Healing Behavior of Ionically Modified Poly(isobutylene-co-isoprene) Rubber , 2017 .

[11]  K. Winey,et al.  Nanoscale Aggregation in Acid- and Ion-Containing Polymers. , 2017, Annual review of chemical and biomolecular engineering.

[12]  A. Bhowmick,et al.  Preferentially fixing nanoclays in the phases of incompatible carboxylated nitrile rubber (XNBR)-natural rubber (NR) blend using thermodynamic approach and its effect on physico mechanical properties , 2016 .

[13]  S. Lazzari,et al.  Fractal-like structures in colloid science. , 2016, Advances in colloid and interface science.

[14]  C. Paranhos,et al.  Dynamic and structural correlations in nanocomposites of silica with modified surface and carboxylated nitrile rubber. , 2016, Journal of colloid and interface science.

[15]  K. Winey,et al.  Direct Comparisons of X-ray Scattering and Atomistic Molecular Dynamics Simulations for Precise Acid Copolymers and Ionomers , 2015 .

[16]  Y. Ikeda,et al.  Dinuclear Bridging Bidentate Zinc/Stearate Complex in Sulfur Cross-Linking of Rubber , 2015 .

[17]  E. Longo,et al.  Evaluation of modified silica nanoparticles in carboxylated nitrile rubber nanocomposites , 2014 .

[18]  G. Boiteux,et al.  Effects of unmodified layered double hydroxides MgAl-LDHs with various structures on the properties of filled carboxylated acrylonitrile–butadiene rubber XNBR , 2014 .

[19]  A. Nogales,et al.  Characterization of Network Structure and Chain Dynamics of Elastomeric Ionomers by Means of 1H Low-Field NMR , 2014 .

[20]  G. Heinrich,et al.  Evidence for an in Situ Developed Polymer Phase in Ionic Elastomers , 2014 .

[21]  Kevin A. Cavicchi,et al.  Perspective: Ionomer Research and Applications , 2014 .

[22]  G. Boiteux,et al.  Ionic elastomers based on carboxylated nitrile rubber (XNBR) and magnesium aluminum layered double hydroxide (hydrotalcite) , 2014 .

[23]  Janelle E. Jenkins,et al.  Room Temperature Morphologies of Precise Acid- and Ion-Containing Polyethylenes , 2013 .

[24]  L. Ibarra,et al.  Effect of covalent cross-links on the network structure of thermo-reversible ionic elastomers , 2012 .

[25]  W. Guo,et al.  A novel nitrile butadiene rubber/zinc chloride composite: Coordination reaction and miscibility , 2012 .

[26]  Wei-Han Huang,et al.  Effects of Annealing Solvents on the Morphology of Block Copolymer-Based Supramolecular Thin Films , 2012 .

[27]  K. Winey,et al.  Influence of Cation Type on Structure and Dynamics in Sulfonated Polystyrene Ionomers , 2011 .

[28]  K. Winey,et al.  Nanoscale morphology in precisely sequenced poly(ethylene-co-acrylic acid) zinc ionomers. , 2010, Journal of the American Chemical Society.

[29]  F. E. Kühn,et al.  Nitrile ligated transition metal complexes with weakly coordinating counteranions and their catalytic applications. , 2009, Chemical reviews.

[30]  K. Winey,et al.  Local structure and composition of the ionic aggregates in Cu(II)-neutralized poly(styrene-co-methacrylic acid) ionomers depend on acid content and neutralization level , 2009 .

[31]  J. Jestin,et al.  Well-Dispersed Fractal Aggregates as Filler in Polymer−Silica Nanocomposites: Long-Range Effects in Rheology , 2009, 0903.5380.

[32]  B. Grady Review and critical analysis of the morphology of random ionomers across many length scales , 2008 .

[33]  L. Ibarra,et al.  Crosslinking of unfilled carboxylated nitrile rubber with different systems: Influence on properties , 2008 .

[34]  K. Winey,et al.  Nanoscale Morphology of Poly(styrene-ran-methacrylic acid) Ionomers: The Role of Preparation Method, Thermal Treatment, and Acid Copolymer Structure , 2007 .

[35]  V. Zeleňák,et al.  Correlation of infrared spectra of zinc(II) carboxylates with their structures. , 2007, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[36]  Ashish Batra,et al.  Counterion Effect on the Rheology and Morphology of Tailored Poly(dimethylsiloxane) Ionomers , 2006 .

[37]  K. Winey,et al.  Ionic aggregates in Zn‐ and Na‐neutralized poly(ethylene‐ran‐methacrylic acid) blown films , 2005 .

[38]  Jorma Keskinen,et al.  Method for Measuring Effective Density and Fractal Dimension of Aerosol Agglomerates , 2004 .

[39]  T. Lodge,et al.  Phase Behavior of a Block Copolymer in Solvents of Varying Selectivity , 2000 .

[40]  K. Winey,et al.  Ionic aggregates in partially Zn-neutralized poly(ethylene-ran-methacrylic acid) ionomers : Shape, size, and size distribution , 2000 .

[41]  U. Mandal,et al.  Effect of silica filler on dynamic mechanical properties of lonic elastomer based on carboxylated nitrile rubber , 1995 .

[42]  S. Cooper,et al.  Analysis of small-angle x-ray scattering data for model polyurethane ionomers: evaluation of hard-sphere models , 1991 .

[43]  Robert B. Moore,et al.  A new multiplet-cluster model for the morphology of random ionomers , 1990 .

[44]  P. Painter,et al.  Acid salts and the structure of ionomers , 1990 .

[45]  B. Bunker,et al.  Fractals and phase separation , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[46]  B. Chu,et al.  Long-range inhomogeneities in sulfonated polystyrene ionomers , 1989 .

[47]  Kenneth A. Mauritz,et al.  Review and Critical Analyses of Theories of Aggregation in Ionomers , 1988 .

[48]  P. Painter,et al.  Concerning the origin of broad bands observed in the FT-IR spectra of ionomers: cluster formation or water adsorption? , 1984 .

[49]  P. Painter,et al.  Local structures in ionomer multiplets. A vibrational spectroscopic analysis , 1984 .

[50]  Stuart L. Cooper,et al.  Microstructure of ionomers: interpretation of small-angle x-ray scattering data , 1983 .

[51]  P. Painter,et al.  FTIR studies of calcium and sodium ionomers derived from an ethylene–methacrylic acid copolymer , 1982 .