Interactive Walkthroughs and Higher Order Global Illumination

The subtle lighting effects, which can be simulated by global illumination, are important to make virtual worlds look realistic. Higher order global illumination methods, like Wavelet Radiosity, have proven to be very efficient, but do not directly lead to solutions that can be used by the hardware used to display walkthroughs. In this paper, we discuss methods to efficiently map these higher order radiosity solutions to representations suitable for hardware acceleration. Additionally, we discuss similar methods to deal with directionally-depended solutions generated for example by Wavelet Radiance algorithms. CR Descriptors: I.3.7 [Computer Graphics]: Three-dimensional Graphics and Realism — radiosity; virtual reality;

[1]  John E. Howland,et al.  Computer graphics , 1990, IEEE Potentials.

[2]  Philipp Slusallek Vision - an architecture for physically-based rendering , 1995 .

[3]  Shenchang Eric Chen,et al.  QuickTime VR: an image-based approach to virtual environment navigation , 1995, SIGGRAPH.

[4]  Per H. Christensen,et al.  Hierarchical techniques for glossy global illumination , 1996 .

[5]  P. Schröder Wavelet algorithms for illumination computations , 1994 .

[6]  François X. Sillion Clustering and Volume Scattering for Hierarchical Radiosity Calculations , 1995 .

[7]  Pat Hanrahan,et al.  A rapid hierarchical radiosity algorithm , 1991, SIGGRAPH.

[8]  Hans-Peter Seidel,et al.  Smart Links and Efficient Reconstruction for Wavelet Radiosity , 1995, Rendering Techniques.

[9]  Donald P. Greenberg,et al.  Radiosity redistribution for dynamic environments , 1990, IEEE Computer Graphics and Applications.

[10]  Harold R. Zatz Galerkin radiosity: a higher order solution method for global illumination , 1993, SIGGRAPH.

[11]  Donald P. Greenberg,et al.  A progressive refinement approach to fast radiosity image generation , 1988, SIGGRAPH.

[12]  Hans-Peter Seidel,et al.  Implementing RenderMan ‐ Practice, Problems and Enhancements , 1994, Comput. Graph. Forum.

[13]  James T. Kajiya,et al.  The rendering equation , 1986, SIGGRAPH.

[14]  Pat Hanrahan,et al.  Wavelet radiosity , 1993, SIGGRAPH.

[15]  John Rohlf,et al.  IRIS performer: a high performance multiprocessing toolkit for real-time 3D graphics , 1994, SIGGRAPH.

[16]  Hans-Peter Seidel,et al.  Vision - An Architecture for Global Illumination Calculations , 1995, IEEE Trans. Vis. Comput. Graph..

[17]  James Arvo,et al.  A clustering algorithm for radiosity in complex environments , 1994, SIGGRAPH.

[18]  松田 晃一,et al.  Virtual Reality Modeling Language , 1997 .

[19]  Karol Myszkowski,et al.  Texture Mapping as an Alternative for Meshing During Walkthrough Animation , 1995 .

[20]  Leonard McMillan,et al.  Plenoptic Modeling: An Image-Based Rendering System , 2023 .

[21]  Frank Schöffel,et al.  Fast Radiosity Repropagation For Interactive Virtual Environments Using A Shadow-Form-Factor-List , 1995 .

[22]  Hans-Peter Seidel,et al.  Using Procedural Renderman Shaders for Global Illumination , 1995 .

[23]  Donald P. Greenberg,et al.  Modeling the interaction of light between diffuse surfaces , 1984, SIGGRAPH.