A landscape with games in the background

An overview of applications of two player path-forming games to verification and synthesis is given. Several extensions of the standard model of finite games with regular winning conditions are discussed. One direction is that of considering non-regular winning conditions. The other concerns the ways games are played, in particular probabilistic and multi-player games.

[1]  Pawel Urzyczyn,et al.  Higher-Order Pushdown Trees Are Easy , 2002, FoSSaCS.

[2]  A. Kechris Classical descriptive set theory , 1987 .

[3]  Donald A. Martin,et al.  The determinacy of Blackwell games , 1998, Journal of Symbolic Logic.

[4]  Somesh Jha,et al.  Weighted pushdown systems and their application to interprocedural dataflow analysis , 2003, Sci. Comput. Program..

[5]  Amir Pnueli,et al.  Distributed reactive systems are hard to synthesize , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[6]  Andrzej S. Murawski,et al.  Applying Game Semantics to Compositional Software Modeling and Verification , 2004, TACAS.

[7]  Colin Stirling,et al.  Modal and Temporal Properties of Processes , 2001, Texts in Computer Science.

[8]  Igor Walukiewicz,et al.  Games for synthesis of controllers with partial observation , 2003, Theor. Comput. Sci..

[9]  Y. Moschovakis Descriptive Set Theory , 1980 .

[10]  W. M. Wonham,et al.  Think globally, act locally: decentralized supervisory control , 1992 .

[11]  Walter Felscher Dialogues as a Foundation for Intuitionistic Logic , 2002 .

[12]  W. M. Wonham,et al.  Decentralized control and coordination of discrete-event systems with partial observation , 1990 .

[13]  Thomas A. Henzinger,et al.  The Element of Surprise in Timed Games , 2003, CONCUR.

[14]  Vijay K. Garg,et al.  Modeling and Control of Logical Discrete Event Systems , 1994 .

[15]  Thierry Cachat,et al.  Higher Order Pushdown Automata, the Caucal Hierarchy of Graphs and Parity Games , 2003, ICALP.

[16]  Jens Knoop,et al.  An Automata-Theoretic Approach to Interprocedural Data-Flow Analysis , 1999, FoSSaCS.

[17]  Sophie Pinchinat,et al.  Quantified Mu-Calculus for Control Synthesis , 2003, MFCS.

[18]  Igor Walukiewicz Local Logics for Traces , 2000 .

[19]  Luca de Alfaro,et al.  Quantitative Verification and Control via the Mu-Calculus , 2003, CONCUR.

[20]  Rupak Majumdar,et al.  Quantitative solution of omega-regular games , 2004, J. Comput. Syst. Sci..

[21]  Luigi Santocanale,et al.  Ambiguous Classes in the Games µ-Calculus Hierarchy , 2003, FoSSaCS.

[22]  Olivier Serre Games with Winning Conditions of High Borel Complexity , 2004, ICALP.

[23]  Andreas Blass,et al.  A Game Semantics for Linear Logic , 1992, Ann. Pure Appl. Log..

[24]  Wolfgang Thomas,et al.  Symbolic Synthesis of Finite-State Controllers for Request-Response Specifications , 2003, CIAA.

[25]  Michael J. Fischer,et al.  The Consensus Problem in Unreliable Distributed Systems (A Brief Survey) , 1983, FCT.

[26]  Erich Grädel Positional Determinacy of Infinite Games , 2004, STACS.

[27]  Igor Walukiewicz Model Checking CTL Properties of Pushdown Systems , 2000, FSTTCS.

[28]  Didier Caucal On Infinite Terms Having a Decidable Monadic Theory , 2002, MFCS.

[29]  E. Allen Emerson,et al.  Tree automata, mu-calculus and determinacy , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[30]  Joseph Sifakis,et al.  Controller Synthesis for Timed Automata 1 , 1998 .

[31]  Igor Walukiewicz,et al.  Distributed Games , 2003, FSTTCS.

[32]  Thomas A. Henzinger,et al.  A Comparison of Control Problems for Timed and Hybrid Systems , 2002, HSCC.

[33]  Rajeev Alur,et al.  Visibly pushdown languages , 2004, STOC '04.

[34]  P. S. Thiagarajan,et al.  Distributed Controller Synthesis for Local Specifications , 2001, ICALP.

[35]  Julian C. Bradfield,et al.  The Modal µ-Calculus Alternation Hierarchy is Strict , 1998, Theor. Comput. Sci..

[36]  Moshe Tennenholtz,et al.  Distributed Games , 1998, TARK.

[37]  Wolfgang Thomas,et al.  On the Synthesis of Strategies in Infinite Games , 1995, STACS.

[38]  Andrzej Wlodzimierz Mostowski,et al.  Regular expressions for infinite trees and a standard form of automata , 1984, Symposium on Computation Theory.

[39]  Rupak Majumdar,et al.  Quantitative solution of omega-regular games380872 , 2001, STOC '01.

[40]  Yoram Hirshfeld,et al.  Quantitative Temporal Logic , 1999, CSL.

[41]  Christof Löding Model-Checking Infinite Systems Generated by Ground Tree Rewriting , 2002, FoSSaCS.

[42]  Amir Pnueli,et al.  On Recognizable Timed Languages , 2004, FoSSaCS.

[43]  Christos G. Cassandras,et al.  Introduction to Discrete Event Systems , 1999, The Kluwer International Series on Discrete Event Dynamic Systems.

[44]  Brian A. Coan,et al.  A Simple and Efficient Randomized Byzantine Agreement Algorithm , 1985, IEEE Transactions on Software Engineering.

[45]  Igor Walukiewicz,et al.  Games for the mu-Calculus , 1996, Theor. Comput. Sci..

[46]  Wieslaw Zielonka,et al.  Perfect-Information Stochastic Parity Games , 2004, FoSSaCS.

[47]  Luigi Santocanale,et al.  A Calculus of Circular Proofs and Its Categorical Semantics , 2001, FoSSaCS.

[48]  Parosh Aziz Abdulla,et al.  Deciding Monotonic Games , 2003, CSL.

[49]  L. Santocanale,et al.  Free μ-lattices , 2000 .

[50]  Thomas A. Henzinger,et al.  Event-Clock Automata: A Determinizable Class of Timed Automata , 1999, Theor. Comput. Sci..

[51]  Arnaud Carayol,et al.  The Caucal Hierarchy of Infinite Graphs in Terms of Logic and Higher-Order Pushdown Automata , 2003, FSTTCS.

[52]  M. Naderi Think globally... , 2004, HIV prevention plus!.

[53]  W. M. Wonham,et al.  The control of discrete event systems , 1989 .

[54]  Christof Löding,et al.  Infinite graphs generated by tree rewriting , 2003 .

[55]  Paul Gastin,et al.  Pure future local temporal logics are expressively complete for Mazurkiewicz traces , 2004, Inf. Comput..

[56]  O. Kupermann,et al.  Synthesizing distributed systems , 2001, Proceedings 16th Annual IEEE Symposium on Logic in Computer Science.

[57]  Igor Walukiewicz,et al.  Pushdown Games with Unboundedness and Regular Conditions , 2003, FSTTCS.

[58]  Yoram Hirshfeld,et al.  A Framework for Decidable Metrical Logics , 1999, ICALP.

[59]  C.-H. Luke Ong Observational equivalence of 3rd-order Idealized Algol is decidable , 2002, Proceedings 17th Annual IEEE Symposium on Logic in Computer Science.

[60]  Pierre Wolper,et al.  An automata-theoretic approach to branching-time model checking , 2000, JACM.

[61]  Stavros Tripakis Undecidable problems of decentralized observation and control on regular languages , 2004, Inf. Process. Lett..

[62]  Stéphane Riedweg Logiques pour le contrôle d'automatismes discrets , 2003 .

[63]  Michael O. Rabin,et al.  Randomized byzantine generals , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[64]  Joost Engelfriet,et al.  Iterated pushdown automata and complexity classes , 1983, STOC.

[65]  Pierre-Yves Schobbens,et al.  The Regular Real-Time Languages , 1998, ICALP.

[66]  Igor Walukiewicz,et al.  Deciding low levels of tree-automata hierarchy , 2002, WoLLIC.

[67]  P. Madhusudan,et al.  Control and synthesis of open reactive systems , 2001 .

[68]  Deepak D'Souza,et al.  Timed Control with Partial Observability , 2003, CAV.

[69]  Wolfgang Thomas,et al.  Solving Pushdown Games with a Sigma3 Winning Condition , 2002, CSL.

[70]  I. Walukiewicz Pushdown Processes: Games and Model Checking , 1996 .

[71]  Thomas Colcombet,et al.  On the positional determinacy of edge-labeled games , 2006, Theor. Comput. Sci..

[72]  P. S. Thiagarajan,et al.  A Decidable Class of Asynchronous Distributed Controllers , 2002, CONCUR.

[73]  Cynthia Dwork,et al.  Randomization in Byzantine Agreement , 1989, Adv. Comput. Res..

[74]  P. Madhusudan,et al.  Timed Control Synthesis for External Specifications , 2002, STACS.

[75]  Igor Walukiewicz,et al.  Pushdown Processes: Games and Model-Checking , 1996, Inf. Comput..

[76]  Robert McNaughton,et al.  Infinite Games Played on Finite Graphs , 1993, Ann. Pure Appl. Logic.

[77]  Krishnendu Chatterjee,et al.  Quantitative stochastic parity games , 2004, SODA '04.

[78]  André Arnold,et al.  p329 The µ-calculus alternation-depth hierarchy is strict on binary trees , 1999, RAIRO Theor. Informatics Appl..