The bouncing motion appearing in a robotic system with unilateral constraint
暂无分享,去创建一个
Bin Chen | Zhen Zhao | Caishan Liu | Bin Chen | Caishan Liu | Zhen Zhao
[1] J. Keller. Impact With Friction , 1986 .
[2] H. Cohen,et al. The occurrence of Painleve's paradox in the motion of a rotating shaft , 1997 .
[3] É. Delassus. Sur les lois du frottement de glissement , 1923 .
[4] Per Lötstedt. Mechanical Systems of Rigid Bodies Subject to Unilateral Constraints , 1982 .
[5] Raymond M. Brach. Impact Coefficients and Tangential Impacts , 1997 .
[6] Henk Nijmeijer,et al. Periodic motion and bifurcations induced by the Painlevé paradox , 2002 .
[7] Peter Eberhard,et al. Comparison of Analytical and Experimental Results for Longitudinal Impacts on Elastic Rods , 2003 .
[8] G. Stavroulakis. Multibody Dynamics with Unilateral Contacts by Friedrich Pfeiffer and Christoph Glocker, Wiley, New York, 1996 , 1998 .
[9] É. Delassus. Considérations sur le frottement de glissement , 1920 .
[10] Per Lötstedt. Coulomb Friction in Two-Dimensional Rigid Body Systems , 1981 .
[11] B. Brogliato,et al. New results on Painlevé paradoxes , 1999 .
[12] S. Grigoryan. The solution to the Painleve paradox for dry friction , 2001 .
[13] Raouf A. Ibrahim,et al. Friction-Induced Vibration, Chatter, Squeal, and Chaos—Part II: Dynamics and Modeling , 1994 .
[14] David Baraff,et al. Coping with friction for non-penetrating rigid body simulation , 1991, SIGGRAPH.
[15] R. Fricke,et al. Zu Painlevés Kritik der Coulombschen Reibungsgesetze , 1922 .
[16] Pierre E. Dupont,et al. Analysis of Rigid-Body Dynamic Models for Simulation of Systems With Frictional Contacts , 2001 .
[17] Michael A. Erdmann,et al. On a Representation of Friction in Configuration Space , 1994, Int. J. Robotics Res..
[18] The numerical method for three-dimensional impact with friction of multi-rigid-body system , 2006 .
[19] Friedrich Pfeiffer,et al. Multibody Dynamics with Unilateral Contacts , 1996 .
[20] D. Stewart. Convergence of a Time‐Stepping Scheme for Rigid‐Body Dynamics and Resolution of Painlevé's Problem , 1998 .
[21] Jeff Koechling,et al. Partitioning the Parameter Space According to Different Behaviors During Three-Dimensional Impacts , 1995 .
[22] Werner Schiehlen,et al. Three Approaches for Elastodynamic Contact in Multibody Systems , 2004 .
[23] David E. Stewart,et al. Rigid-Body Dynamics with Friction and Impact , 2000, SIAM Rev..
[24] 金海,et al. Impact model resolution on Painlevé's paradox , 2004 .
[25] J. A. Batlle. Rough Balanced Collisions , 1996 .
[26] M. T. Mason,et al. Two-Dimensional Rigid-Body Collisions With Friction , 1992 .
[27] Bernard Brogliato,et al. Some perspectives on the analysis and control of complementarity systems , 2003, IEEE Trans. Autom. Control..
[28] Christoph Glocker,et al. Oblique Frictional Impact of a Bar: Analysis and Comparison of Different Impact Laws , 2005 .
[29] Singularities in the dynamics of systems with non-ideal constraints☆ , 2003 .
[30] J. Moreau,et al. Unilateral Contact and Dry Friction in Finite Freedom Dynamics , 1988 .