Dynamic Stall Suppression Using Combustion-Powered Actuation (COMPACT)

Retreating blade stall is a well-known phenomenon that limits rotorcraft speed, maneuverability, and efficiency. Airfoil dynamic stall is a simpler problem, which demonstrates many of the same flow phenomena. Combustion Powered Actuation (COMPACT) is an active flow control technology, which at the outset of this work, had been shown to mitigate static and dynamic stall at low Mach numbers. The attributes of this technology suggested strong potential for success at higher Mach numbers, but such experiments had never been conducted. The work detailed in this report documents a 3-year effort focused on assessing the effectiveness of COMPACT for dynamic stall suppression at freestream conditions up to Mach 0.5. The work done has focused on implementing COMPACT on a high-lift rotorcraft airfoil: the VR-12. This selection was made in order to ensure that any measured benefits are over and above the capabilities of state-of-the-art high-lift rotorcraft airfoils. The detailed Computational Fluid Dynamics (CFD) simulations, wind-tunnel experiments, and system-level modeling conducted have shown the following: (1) COMPACT, in its current state of development, is capable of reducing the adverse effects of deep dynamic stall at Mach numbers up to 0.4; (2) The two-dimensional (2D) CFD results trend well compared to the experiments; and (3) Implementation of the CFD results into a system-level model suggest that significant rotor-level benefits are possible.

[1]  François Richez,et al.  Dynamic Stall Control Using Deployable Leading-Edge Vortex Generators , 2011 .

[2]  Brian E. Wake,et al.  Rotorcraft retreating blade stall control , 2000 .

[3]  Othon K. Rediniotis,et al.  Effects of Synthetic Jets on Large Amplitude Sinusoidal Pitch Motions , 2005 .

[4]  I. Wygnanski,et al.  The control of separation by periodic oscillations , 1994 .

[5]  W. Geißler,et al.  Dynamic Stall Control Investigations on a Full Size Chord Blade Section , 2004 .

[6]  Kai Richter,et al.  Experimental Investigation of Air Jets for the Control of Compressible Dynamic Stall , 2013 .

[7]  Matthew L. Wilbur,et al.  FURTHER EXAMINATION OF THE VIBRATORY LOADS REDUCTION RESULTS FROM THE NASA/ARMY/MIT ACTIVE TWIST ROTOR TEST , 2002 .

[8]  Ari Glezer,et al.  Transient Separation Control Using Pulse-Combustion Actuation , 2006 .

[9]  Jin Tso,et al.  Control of VR-7 Dynamic Stall by Strong Steady Blowing , 2004 .

[10]  Peter F. Lorber,et al.  Frequency response calibration of recess-mounted pressure transducers , 1991 .

[11]  Markus Raffel,et al.  Dynamic Stall Control by Passive Disturbance Generators , 2013 .

[12]  Redstone Arsenal,et al.  Passive Control of Compressible Dynamic Stall , 2008 .

[13]  Ari Glezer,et al.  Combustion Powered Actuators for Separation Control , 2012 .

[14]  David E. Parekh,et al.  Combustion-driven jet actuators for flow control , 2001 .

[15]  U.T.P. Arnold,et al.  Recent IBC flight test results from the CH-53G helicopter , 2003 .

[16]  Alexis Lefebvre,et al.  Numerical Simulation of Pitching Airfoil Performance Enhancement Using Co-Flow Jet Flow Control , 2013 .

[17]  Bruce L. Storms,et al.  Lift enhancement of an airfoil using a Gurney flap and vortex generators , 1993 .

[18]  Israel J Wygnanski,et al.  Dynamic stall control by periodic excitation, Part 1: NACA 0015 parametric study , 2001 .

[19]  Miguel R. Visbal,et al.  Numerical Exploration of Flow Control for Delay of Dynamic Stall on a Pitching Airfoil , 2014 .

[20]  Ahmed A. Hassan,et al.  Experimental/Numerical Evaluation of Integral Trailing Edge Flaps for Helicopter Rotor Applications , 2005 .

[21]  Jain,et al.  CFD-CSD Analysis of Active Control of Helicopter Rotor for Performance Improvement , 2009 .

[22]  P. Spalart A One-Equation Turbulence Model for Aerodynamic Flows , 1992 .

[23]  Soogab Lee,et al.  Dynamic Stall Control for Advanced Rotorcraft Application , 1995 .

[24]  Thomas Corke,et al.  High Mach Number Leading-edge Flow Separation Control using AC DBD Plasma Actuators , 2011 .

[25]  Peter F. Lorber,et al.  Unsteady Stall Penetration Experiments at High Reynolds Number , 1987 .

[26]  Roderick A. McD. Galbraith,et al.  Control of rotorcraft retreating blade stall using air-jet vortex generators , 2006 .

[27]  Othon K. Rediniotis,et al.  Effects of Synthetic Jet Actuation on a Ramping NACA 0015 Airfoil , 2004 .

[28]  Inderjit Chopra,et al.  Examination of Rotor Loads due to On-Blade Active Controls for Performance Enhancement , 2010 .

[29]  Brian E. Wake,et al.  Separation Control for Rotorcraft Final Progress Report , 2002 .

[30]  W. Geißler,et al.  Dynamic Stall Control by Variable Airfoil Camber , 1994 .

[31]  George A. Lesieutre,et al.  Miniature trailing-edge effectors for rotorcraft performance enhancement , 2007 .

[32]  Lakshmi N. Sankar,et al.  Oscillating Iced Airfoil Pressure Measurement and Computation , 2013 .

[33]  T. Corke,et al.  Leading-Edge Separation Control Using Alternating-Current and Nanosecond-Pulse Plasma Actuators , 2014 .

[34]  Matthew William Frankhouser,et al.  Nanosecond Dielectric Barrier Discharge Plasma Actuator Flow Control ofCompressible Dynamic Stall , 2015 .

[35]  Israel J Wygnanski,et al.  Parameters affecting dynamic stall control by oscillatory excitation , 1999 .

[36]  Ari Glezer,et al.  Aerodynamic Control using Distributed Bleed , 2012 .

[37]  T. Corke,et al.  Separation Control Using Plasma Actuators: Dynamic Stall Vortex Control on Oscillating Airfoil , 2006 .

[38]  Ari Glezer,et al.  Characterization of Combustion Powered Actuators for Flow Control , 2006 .

[39]  Kai Richter,et al.  Experimental investigation of high-pressure pulsed blowing for dynamic stall control , 2014 .

[40]  Inderjit Chopra,et al.  Active Flaps and Slats for Rotor Performance Enhancement , 2011 .

[41]  Thomas R. Norman,et al.  Full-Scale Wind Tunnel Test Of A UH-60 Individual Blade Control System For Performance Improvement And Vibration, Loads, And Noise Control , 2009 .

[42]  Alexis Lefebvre,et al.  Pitching Airfoil Performance Enhancement Using Co-Flow Jet Flow Control at High Mach Number , 2014 .

[43]  Hyeonsoo Yeo,et al.  Assessment of Active Controls for Rotor Performance Enhancement , 2008 .

[44]  Ari Glezer,et al.  Transitory Separation Control over a Stalled Airfoil , 2009 .

[45]  W. Mccroskey,et al.  Dynamic Stall Experiments on Oscillating Airfoils , 1975 .

[46]  Thomas C. Corke,et al.  Closed-loop Dynamic Stall Control Using a Plasma Actuator , 2012 .

[47]  M. S. Chandrasekhara,et al.  Compressible Dynamic Stall Control Using a Variable Droop Leading Edge Airfoil , 2003 .

[48]  Guy Dumas,et al.  Gurney flap effects and scaling for low-speed airfoils , 1995 .

[49]  Michael Amitay,et al.  Aerodynamic Flow Control Using Synthetic Jet Technology , 1998 .

[50]  Hassan M. Nagib,et al.  Effective flow control for rotorcraft applications at flight Mach numbers , 2001 .

[51]  K. Mcmanus,et al.  Control of dynamic stall using pulsed vortex generator jets , 1998 .

[52]  Ari Glezer,et al.  Transitory Control of a Pitching Airfoil using Pulse Combustion Actuation , 2008 .

[53]  Peter F. Lorber,et al.  Airfoil dynamic stall at constant pitch rate and high Reynolds number , 1987 .

[54]  K. W. McAlister,et al.  Suppression of Dynamic Stall by Steady and Pulsed Upper-Surface Blowing , 1998 .

[55]  Kai Richter,et al.  Numerical investigation of air jets for dynamic stall control on the OA209 airfoil , 2011 .

[56]  M. S. Chandrasekhara,et al.  Dynamic Stall Measurements and Computations for a VR-12 Airfoil with a Variable Droop Leading Edge , 2013 .

[57]  Brian E. Wake,et al.  Computational Evaluation of Directed Synthetic Jets for Dynamic Stall Control , 2001 .

[58]  K. Mcalister,et al.  The effect of a leading-edge slat on the dynamic stall of an oscillating airfoil , 1983 .

[59]  Brian E. Wake,et al.  Combustion-Powered Actuation for Dynamic Stall Suppression - Simulations and Low-Mach Experiments , 2014 .

[60]  Shreyas Ananthan,et al.  Coupled CFD/CSD Prediction of the Effects of Leading Edge Slat on Rotor Performance , 2009 .

[61]  Peter F. Lorber,et al.  Design and Evaluation of Slatted Airfoils for Improved Rotor Performance , 2006 .

[62]  Holger Mai,et al.  Experimental investigation of air jets to control shock-induced dynamic stall , 2014 .

[63]  R. Raju,et al.  Dynamics of Airfoil Separation Control using Zero-Net Mass-Flux Forcing , 2008 .

[64]  Peter F. Lorber,et al.  Active Rotor Experiments at Mach Scale Using Root Pitch IBC , 2001 .

[65]  Friedrich K. Straub,et al.  Aeromechanics of the SMART Active Flap Rotor , 2007 .

[66]  A. Stroud,et al.  Gaussian quadrature formulas , 1966 .

[67]  Lakshmi N. Sankar,et al.  Aerodynamic Evaluation of Miniature Trailing-Edge Effectors for Active Rotor Control , 2010 .

[68]  Wolfgang Nitsche,et al.  New Results in Numerical and Experimental Fluid Mechanics , 1999 .

[69]  Christian Oliver Paschereit,et al.  Control of Unsteady Aerodynamic Loads Using Adaptive Blowing , 2014 .

[70]  Brian E. Wake,et al.  Computations of Dynamic Stall Control with Combustion-Powered Actuation , 2015 .

[71]  Markus Bauer,et al.  Design, Evaluation and Test of Active Trailing Edge , 2011 .

[72]  Brian E. Wake,et al.  Parametric Analysis of Directed-Synthetic Jets for Improved Dynamic-Stall Performance , 2003 .

[73]  Kai Richter,et al.  Dynamic stall control by leading edge vortex generators , 2006 .