Complete nucleotide sequence of a plasmid containing the botulinum neurotoxin gene in Clostridiumbotulinum type B strain 111 isolated from an infant patient in Japan

[1]  Gary Xie,et al.  Molecular characterization of a novel botulinum neurotoxin type H gene. , 2014, The Journal of infectious diseases.

[2]  S. Arnon,et al.  A novel strain of Clostridium botulinum that produces type B and type H botulinum toxins. , 2014, The Journal of infectious diseases.

[3]  S. Kozaki,et al.  Multi-locus variable number tandem repeat analysis for Clostridium botulinum type B isolates in Japan: comparison with other isolates and genotyping methods. , 2013, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[4]  Y. Seto,et al.  Stability of toxigenicity in proteolytic Clostridium botulinum type B upon serial passage , 2012, Microbiology and immunology.

[5]  Leonard A. Smith,et al.  Recombination and insertion events involving the botulinum neurotoxin complex genes in Clostridium botulinum types A, B, E and F and Clostridium butyricum type E strains , 2009, BMC Biology.

[6]  Y. Fujinaga,et al.  A novel function of botulinum toxin-associated proteins: HA proteins disrupt intestinal epithelial barrier to increase toxin absorption. , 2009, Toxicon : official journal of the International Society on Toxinology.

[7]  Y. Seto,et al.  Genetic Characterization of Clostridium botulinum Associated with Type B Infant Botulism in Japan , 2009, Journal of Clinical Microbiology.

[8]  Yuji Nagata,et al.  GenomeMatcher: A graphical user interface for DNA sequence comparison , 2008, BMC Bioinformatics.

[9]  Leonard A. Smith,et al.  Analysis of the Neurotoxin Complex Genes in Clostridium botulinum A1-A4 and B1 Strains: BoNT/A3, /Ba4 and /B1 Clusters Are Located within Plasmids , 2007, PloS one.

[10]  W. Lencer,et al.  The HA proteins of botulinum toxin disrupt intestinal epithelial intercellular junctions to increase toxin absorption , 2007, Cellular microbiology.

[11]  A. T. Carter,et al.  Genome sequence of a proteolytic (Group I) Clostridium botulinum strain Hall A and comparative analysis of the clostridial genomes. , 2007, Genome research.

[12]  S. Kozaki,et al.  Differential contribution of the residues in C-terminal half of the heavy chain of botulinum neurotoxin type B to its binding to the ganglioside GT1b and the synaptotagmin 2/GT1b complex. , 2007, Microbial pathogenesis.

[13]  M. Hattori,et al.  The genome sequence of Clostridium botulinum type C neurotoxin-converting phage and the molecular mechanisms of unstable lysogeny. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[14]  C. Keet,et al.  Recent advances in infant botulism. , 2005, Pediatric neurology.

[15]  Jizhong Zhou,et al.  Alkaline Anaerobic Respiration: Isolation and Characterization of a Novel Alkaliphilic and Metal-Reducing Bacterium , 2004, Applied and Environmental Microbiology.

[16]  B. Dupuy,et al.  Organization and regulation of the neurotoxin genes in Clostridium botulinum and Clostridium tetani. , 2004, Anaerobe.

[17]  T. Karasawa,et al.  Sequence of the gene for Clostridium botulinum type B neurotoxin associated with infant botulism, expression of the C-terminal half of heavy chain and its binding activity. , 2003, Biochimica et biophysica acta.

[18]  M. Waldor,et al.  Filamentous phage integration requires the host recombinases XerC and XerD , 2002, Nature.

[19]  Philip K. Russell,et al.  Botulinum toxin as a biological weapon: medical and public health management. , 2001, JAMA.

[20]  H. Niki,et al.  Active segregation by the Bacillus subtilis partitioning system in Escherichia coli. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[21]  H. Mori,et al.  The R‐type pyocin of Pseudomonas aeruginosa is related to P2 phage, and the F‐type is related to lambda phage , 2000, Molecular microbiology.

[22]  T. Karasawa,et al.  Characterization of Clostridium botulinum Type B Neurotoxin Associated with Infant Botulism in Japan , 1998, Infection and Immunity.

[23]  H. Korkeala,et al.  Genomic Analysis of Clostridium botulinum Group II by Pulsed-Field Gel Electrophoresis , 1998, Applied and Environmental Microbiology.

[24]  S. Nakamura,et al.  Emergence of Clostridium botulinum type B-like nontoxigenic organisms in a patient with type B infant botulism , 1997, Journal of clinical microbiology.

[25]  B. Efron,et al.  Bootstrap confidence levels for phylogenetic trees. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[26]  B. Efron,et al.  Bootstrap confidence levels for phylogenetic trees. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[27]  K. Yamakawa,et al.  The first case of type B infant botulism in Japan , 1996, Acta paediatrica Japonica : Overseas edition.

[28]  G. Schiavo,et al.  Structure and function of tetanus and botulinum neurotoxins , 1995, Quarterly Reviews of Biophysics.

[29]  F. Cornet,et al.  Plasmid pSC101 harbors a recombination site, psi, which is able to resolve plasmid multimers and to substitute for the analogous chromosomal Escherichia coli site dif , 1994, Journal of bacteriology.

[30]  C. Hatheway,et al.  Toxigenic clostridia , 1990, Clinical Microbiology Reviews.

[31]  H. Sugiyama Clostridium botulinum neurotoxin. , 1980, Microbiological reviews.

[32]  J. Blake,et al.  Case of infant botulism in Texas. , 1977, Texas medicine.

[33]  C. A. Smith,et al.  Bacteriophage and the Toxigenicity of Clostridium botulinum Type C , 1971, Science.

[34]  C. Lamanna,et al.  The Isolation of Type B Botulinum Toxin , 1947, Journal of bacteriology.

[35]  K. Hill,et al.  Genetic diversity within Clostridium botulinum serotypes, botulinum neurotoxin gene clusters and toxin subtypes. , 2013, Current topics in microbiology and immunology.

[36]  B. Das,et al.  Integrative mobile elements exploiting Xer recombination. , 2013, Trends in microbiology.

[37]  M. Peck Biology and genomic analysis of Clostridium botulinum. , 2009, Advances in microbial physiology.

[38]  U. Zielenkiewicz,et al.  Mechanisms of plasmid stable maintenance with special focus on plasmid addiction systems. , 2001, Acta biochimica Polonica.

[39]  D. Ladant,et al.  The comprehensive sourcebook of bacterial protein toxins , 1999 .

[40]  M. Chandler,et al.  Insertion Sequences , 1998, Microbiology and Molecular Biology Reviews.