A comparative study of CO2, CH4 and N2 adsorption in ZIF-8, Zeolite-13X and BPL activated carbon

Abstract Experimental adsorption isotherms of CO 2 , CH 4 and N 2 in ZIF-8, Zeolite 13X and BPL activated carbon are reported at 25 °C and up to 1 bar. Results show that the adsorption capacity of Zeolite-13X is very sensitive to the activation temperature used. When properly activated its gas uptake is considerably higher than BPL activated carbon and ZIF-8. CO 2 /CH 4 and CO 2 /N 2 mixture adsorption isotherms based on IAST calculations reveal that Zeolite-13X also has significantly higher selectivities for CO 2 compared to BPL activated carbon and ZIF-8. ZIF-8 performs poorly for CO 2 separations within the pressure range investigated; on the other hand, its adsorption capacity shows no dependence of regeneration temperature.

[1]  Alan L. Myers,et al.  Thermodynamics of mixed‐gas adsorption , 1965 .

[2]  David S. Sholl,et al.  Adsorption and separation of hydrogen isotopes in carbon nanotubes: Multicomponent grand canonical Monte Carlo simulations , 2002 .

[3]  Edward J. Daniels,et al.  CO2 capture from the flue gas of conventional fossil‐fuel‐fired power plants , 1994 .

[4]  Chongli Zhong,et al.  Molecular simulation of carbon dioxide/methane/hydrogen mixture adsorption in metal-organic frameworks. , 2006, The journal of physical chemistry. B.

[5]  R. T. Yang,et al.  Comparison of Activated Carbon and Zeolite 13X for CO2 Recovery from Flue-Gas by Pressure Swing Adsorption , 1995 .

[6]  R. Snurr,et al.  Screening CO2/N2 selectivity in metal‐organic frameworks using Monte Carlo simulations and ideal adsorbed solution theory , 2012 .

[7]  Alírio E. Rodrigues,et al.  Adsorption Equilibrium of Methane, Carbon Dioxide, and Nitrogen on Zeolite 13X at High Pressures , 2004 .

[8]  D. Luebke,et al.  Hybrid Membranes for Selective Carbon Dioxide Separation from Fuel Gas , 2006 .

[9]  Hong-Cai Zhou,et al.  Metal-organic frameworks for separations. , 2012, Chemical reviews.

[10]  Gao Qing Lu,et al.  VOC removal : Comparison of MCM-41 with hydrophobic zeolites and activated carbon , 1998 .

[11]  S. Sandler,et al.  Storage and separation of CO2 and CH4 in silicalite, C168 schwarzite, and IRMOF-1: a comparative study from Monte Carlo simulation. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[12]  David S. Sholl,et al.  Atomistic Simulations of CO2 and N2 Adsorption in Silica Zeolites: The Impact of Pore Size and Shape† , 2002 .

[13]  J. Long,et al.  CO2/CH4, CH4/H2 and CO2/CH4/H2 separations at high pressures using Mg2(dobdc) , 2012 .

[14]  Omar M. Yaghi,et al.  Metal-organic frameworks: a new class of porous materials , 2004 .

[15]  Timothy Christopher Golden,et al.  ACTIVATED CARBON FOR GAS SEPARATION AND STORAGE , 1996 .

[16]  Zeng-min Shen,et al.  Adsorption separation of CH4/CO2 on mesocarbon microbeads: Experiment and modeling , 2006 .

[17]  J. Jasinski,et al.  Structural evolution of zeolitic imidazolate framework-8. , 2010, Journal of the American Chemical Society.

[18]  A. Feldhoff,et al.  Rapid Room-Temperature Synthesis and Characterization of Nanocrystals of a Prototypical Zeolitic Imidazolate Framework , 2009 .

[19]  Patrick Ryan,et al.  Separation of CO2 from CH4 using mixed-ligand metal-organic frameworks. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[20]  Hong-Cai Zhou,et al.  Selective gas adsorption and separation in metal-organic frameworks. , 2009, Chemical Society reviews.

[21]  Michael O’Keeffe,et al.  Exceptional chemical and thermal stability of zeolitic imidazolate frameworks , 2006, Proceedings of the National Academy of Sciences.

[22]  Stefan Kaskel,et al.  Characterization of metal-organic frameworks by water adsorption , 2009 .

[23]  Chongli Zhong,et al.  Effect of temperature on gas adsorption and separation in ZIF-8: A combined experimental and molecular simulation study , 2011 .

[24]  Xuan Peng,et al.  CNT@Cu3(BTC)2 and Metal–Organic Frameworks for Separation of CO2/CH4 Mixture , 2011 .

[25]  W. Zhou,et al.  Carbon capture in metal–organic frameworks—a comparative study , 2011 .

[26]  Satish K. Nune,et al.  Synthesis and properties of nano zeolitic imidazolate frameworks. , 2010, Chemical communications.

[27]  T. Chung,et al.  Adsorption Equilibria of Aromatic Compounds on Activated Carbon, Silica Gel, and 13X Zeolite , 2004 .

[28]  Chang-Ha Lee,et al.  Adsorption Equilibria of CO2 on Zeolite 13X and Zeolite X/Activated Carbon Composite , 2002 .

[29]  T. Düren,et al.  Evaluation of Ideal Adsorbed Solution Theory as a Tool for the Design of Metal−Organic Framework Materials , 2012 .

[30]  Z. Lai,et al.  Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. , 2011, Chemical communications.

[31]  Claude Mirodatos,et al.  Natural gas treating by selective adsorption: Material science and chemical engineering interplay , 2009 .