Ensembl Plants: Integrating Tools for Visualizing, Mining, and Analyzing Plant Genomics Data.

Ensembl Plants ( http://plants.ensembl.org ) is an integrative resource presenting genome-scale information for a growing number of sequenced plant species (currently 33). Data provided includes genome sequence, gene models, functional annotation, and polymorphic loci. Various additional information are provided for variation data, including population structure, individual genotypes, linkage, and phenotype data. In each release, comparative analyses are performed on whole genome and protein sequences, and genome alignments and gene trees are made available that show the implied evolutionary history of each gene family. Access to the data is provided through a genome browser incorporating many specialist interfaces for different data types, and through a variety of additional methods for programmatic access and data mining. These access routes are consistent with those offered through the Ensembl interface for the genomes of non-plant species, including those of plant pathogens, pests, and pollinators.Ensembl Plants is updated 4-5 times a year and is developed in collaboration with our international partners in the Gramene ( http://www.gramene.org ) and transPLANT projects ( http://www.transplantdb.org ).

[1]  C. T. Hash,et al.  Population genomic and genome-wide association studies of agroclimatic traits in sorghum , 2012, Proceedings of the National Academy of Sciences.

[2]  B. J. Hayes,et al.  Genomic selection: Genomic selection , 2007 .

[3]  Justin N. Vaughn,et al.  Reference genome sequence of the model plant Setaria , 2012, Nature Biotechnology.

[4]  Justin Preece,et al.  Sequencing and de novo transcriptome assembly of Brachypodium sylvaticum (Poaceae)1 , 2013, Applications in plant sciences.

[5]  Georg Haberer,et al.  The genome sequence of African rice (Oryza glaberrima) and evidence for independent domestication , 2014, Nature Genetics.

[6]  J. Batley,et al.  A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome , 2014, Science.

[7]  Takuji Sasaki,et al.  The map-based sequence of the rice genome , 2005, Nature.

[8]  Thomas Nussbaumer,et al.  MIPS PlantsDB: a database framework for comparative plant genome research , 2012, Nucleic Acids Res..

[9]  C. Kole,et al.  Arabidopsis Genome Initiative , 2016 .

[10]  Yadan Luo,et al.  Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation , 2013, Nature.

[11]  Peter J. Bradbury,et al.  Maize HapMap2 identifies extant variation from a genome in flux , 2012, Nature Genetics.

[12]  Alvaro J. González,et al.  The Medicago Genome Provides Insight into the Evolution of Rhizobial Symbioses , 2011, Nature.

[13]  Kenneth L. McNally,et al.  Genomewide SNP variation reveals relationships among landraces and modern varieties of rice , 2009, Proceedings of the National Academy of Sciences.

[14]  J. Rafalski,et al.  Association genetics in crop improvement. , 2010, Current opinion in plant biology.

[15]  Mihaela M. Martis,et al.  The Sorghum bicolor genome and the diversification of grasses , 2009, Nature.

[16]  C. Bustamante,et al.  Genomic Diversity and Introgression in O. sativa Reveal the Impact of Domestication and Breeding on the Rice Genome , 2010, PloS one.

[17]  S. Young,et al.  Dynamo maker ready to roll , 2011, Nature.

[18]  Keith J. Edwards,et al.  CerealsDB 2.0: an integrated resource for plant breeders and scientists , 2012, BMC Bioinformatics.

[19]  Richard M. Clark,et al.  Common Sequence Polymorphisms Shaping Genetic Diversity in Arabidopsis thaliana , 2007, Science.

[20]  Lincoln Stein,et al.  Gramene 2016: comparative plant genomics and pathway resources , 2015, Nucleic Acids Res..

[21]  Yang Dong,et al.  Genome and Comparative Transcriptomics of African Wild Rice Oryza longistaminata Provide Insights into Molecular Mechanism of Rhizomatousness and Self-Incompatibility. , 2015, Molecular plant.

[22]  T. Sakurai,et al.  Genome sequence of the palaeopolyploid soybean , 2010, Nature.

[23]  Neil Hall,et al.  A haplotype map of allohexaploid wheat reveals distinct patterns of selection on homoeologous genomes , 2015, Genome Biology.

[24]  Rod A Wing,et al.  Assembly and Validation of the Genome of the Nonmodel Basal Angiosperm Amborella , 2013, Science.

[25]  Michael S. Barker,et al.  The Selaginella Genome Identifies Genetic Changes Associated with the Evolution of Vascular Plants , 2011, Science.

[26]  Dan M. Bolser,et al.  Gramene 2013: comparative plant genomics resources , 2013, Nucleic Acids Res..

[27]  M. Gribskov,et al.  The Genome of Black Cottonwood, Populus trichocarpa (Torr. & Gray) , 2006, Science.

[28]  Christina E. Wells,et al.  The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution , 2013, Nature Genetics.

[29]  Huanming Yang,et al.  A Draft Sequence of the Rice Genome (Oryza sativa L. ssp. indica) , 2002, Science.

[30]  J. Chapman,et al.  Anchoring and ordering NGS contig assemblies by population sequencing (POPSEQ) , 2013, The Plant journal : for cell and molecular biology.

[31]  Dawn H. Nagel,et al.  The B73 Maize Genome: Complexity, Diversity, and Dynamics , 2009, Science.

[32]  Richard M. Clark,et al.  The Arabidopsis lyrata genome sequence and the basis of rapid genome size change , 2011, Nature Genetics.

[33]  Fumiko Ohta,et al.  Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D , 2004, Nature.

[34]  S. Myles,et al.  Rapid Genomic Characterization of the Genus Vitis , 2010, PloS one.

[35]  J. Poulain,et al.  The genome of the mesopolyploid crop species Brassica rapa , 2011, Nature Genetics.

[36]  R. Durbin,et al.  The Sequence Ontology: a tool for the unification of genome annotations , 2005, Genome Biology.

[37]  David M. Goodstein,et al.  Phytozome: a comparative platform for green plant genomics , 2011, Nucleic Acids Res..

[38]  Daniel W. A. Buchan,et al.  The tomato genome sequence provides insights into fleshy fruit evolution , 2012, Nature.

[39]  Nicholas H. Putnam,et al.  The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation , 2007, Proceedings of the National Academy of Sciences.

[40]  Sara L. Zimmer,et al.  The Chlamydomonas Genome Reveals the Evolution of Key Animal and Plant Functions , 2007, Science.

[41]  J. Poulain,et al.  The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla , 2007, Nature.

[42]  Jun Li,et al.  Whole-genome sequencing reveals untapped genetic potential in Africa’s indigenous cereal crop sorghum , 2013, Nature Communications.

[43]  J. Poulain,et al.  The genome of Theobroma cacao , 2011, Nature Genetics.

[44]  Matthew Fraser,et al.  InterProScan 5: genome-scale protein function classification , 2014, Bioinform..

[45]  The Arabidopsis Genome Initiative Analysis of the genome sequence of the flowering plant Arabidopsis thaliana , 2000, Nature.

[46]  P. Ng,et al.  SIFT missense predictions for genomes , 2015, Nature Protocols.

[47]  Arek Kasprzyk,et al.  BioMart: driving a paradigm change in biological data management , 2011, Database J. Biol. Databases Curation.

[48]  Alejandro A. Schäffer,et al.  A Fast and Symmetric DUST Implementation to Mask Low-Complexity DNA Sequences , 2006, J. Comput. Biol..

[49]  Mihaela M. Martis,et al.  A physical, genetic and functional sequence assembly of the barley genome. , 2022 .

[50]  Saravanaraj N. Ayyampalayam,et al.  The banana (Musa acuminata) genome and the evolution of monocotyledonous plants , 2012, Nature.

[51]  Daniel Rios,et al.  Bioinformatics Applications Note Databases and Ontologies Deriving the Consequences of Genomic Variants with the Ensembl Api and Snp Effect Predictor , 2022 .

[52]  Paul D. Shaw,et al.  Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley , 2012, Nature Genetics.

[53]  Albert J. Vilella,et al.  EnsemblCompara GeneTrees: Complete, duplication-aware phylogenetic trees in vertebrates. , 2009, Genome research.

[54]  Ye Yin,et al.  Whole-genome sequencing of Oryza brachyantha reveals mechanisms underlying Oryza genome evolution , 2013, Nature Communications.

[55]  Robert S. Harris,et al.  Improved pairwise alignment of genomic dna , 2007 .

[56]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[57]  A. Kleinhofs,et al.  Prospects for plant genome modification by nonconventional methods. , 1977, Annual review of genetics.

[58]  S. Ramachandran,et al.  Genome-wide patterns of genetic variation in sweet and grain sorghum (Sorghum bicolor) , 2011, Genome Biology.

[59]  Muhammad Ali Amer,et al.  Genome-wide association study of 107 phenotypes in a common set of Arabidopsis thaliana inbred lines , 2010, Nature.

[60]  David M. A. Martin,et al.  Genome sequence and analysis of the tuber crop potato , 2011, Nature.

[61]  Dan M. Bolser,et al.  OP-PCPJ140183 1..11 , 2015 .

[62]  Sai Guna Ranjan Gurazada,et al.  Genome sequencing and analysis of the model grass Brachypodium distachyon , 2010, Nature.

[63]  D. Haussler,et al.  Human-mouse alignments with BLASTZ. , 2003, Genome research.

[64]  G. Benson,et al.  Tandem repeats finder: a program to analyze DNA sequences. , 1999, Nucleic acids research.

[65]  Zhanguo Xin,et al.  Applying genotyping (TILLING) and phenotyping analyses to elucidate gene function in a chemically induced sorghum mutant population , 2008, BMC Plant Biology.

[66]  John C. Wootton,et al.  Statistics of Local Complexity in Amino Acid Sequences and Sequence Databases , 1993, Comput. Chem..

[67]  O. Kohany,et al.  Repbase Update, a database of repetitive elements in eukaryotic genomes , 2015, Mobile DNA.

[68]  Prudence Mutowo-Meullenet,et al.  Manual GO annotation of predictive protein signatures: the InterPro approach to GO curation , 2012, Database J. Biol. Databases Curation.

[69]  Randall A. Bolanos,et al.  Whole-genome shotgun assembly and comparison of human genome assemblies , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[70]  Wenlong Yang,et al.  Draft genome of the wheat A-genome progenitor Triticum urartu , 2013, Nature.

[71]  J. Bennetzen,et al.  The Physcomitrella Genome Reveals Evolutionary Insights into the Conquest of Land by Plants , 2008, Science.

[72]  Dan M. Bolser,et al.  Ensembl Genomes 2013: scaling up access to genome-wide data , 2013, Nucleic Acids Res..

[73]  C. Soderlund,et al.  The Oryza Map Alignment Project: The Golden Path to Unlocking the Genetic Potential of Wild Rice Species , 2005, Plant Molecular Biology.

[74]  Dawei Li,et al.  The Genomes of Oryza sativa: A History of Duplications , 2005, PLoS biology.

[75]  D. Haussler,et al.  Evolution's cauldron: Duplication, deletion, and rearrangement in the mouse and human genomes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[76]  Dan M. Bolser,et al.  Ensembl Genomes 2016: more genomes, more complexity , 2015, Nucleic Acids Res..

[77]  Barry Smith,et al.  The Plant Ontology as a Tool for Comparative Plant Anatomy and Genomic Analyses , 2012, Plant & cell physiology.

[78]  Kun Lu,et al.  The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes , 2014, Nature Communications.

[79]  W. J. Kent,et al.  BLAT--the BLAST-like alignment tool. , 2002, Genome research.

[80]  D. Hoisington,et al.  Marker-assisted selection: new tools and strategies , 1998 .

[81]  Jun Wang,et al.  Exploring genetic variation in the tomato (Solanum section Lycopersicon) clade by whole-genome sequencing. , 2014, The Plant journal : for cell and molecular biology.

[82]  Rachael P. Huntley,et al.  QuickGO: a web-based tool for Gene Ontology searching , 2009, Bioinform..

[83]  Joachim Schiemann,et al.  Precise plant breeding using new genome editing techniques: opportunities, safety and regulation in the EU. , 2014, The Plant journal : for cell and molecular biology.