Fast Multiscale Gaussian Wavepacket Transforms and Multiscale Gaussian Beams for the Wave Equation

We introduce a new multiscale Gaussian beam method for the numerical solution of the wave equation with smooth variable coefficients. The first computational question addressed in this paper is how to generate a Gaussian beam representation from general initial conditions for the wave equation. We propose fast multiscale Gaussian wavepacket transforms and introduce a highly efficient algorithm for generating the multiscale beam representation for a general initial condition. Starting from this multiscale decomposition of initial data, we propose the multiscale Gaussian beam method for solving the wave equation. The second question is how to perform long time propagation. Based on this new initialization algorithm, we utilize a simple reinitialization procedure that regenerates the beam representation when the beams become too wide. Numerical results in one, two, and three dimensions illustrate the properties of the proposed algorithm. The methodology can be readily generalized to treat other wave propagat...

[1]  Laurent Demanet,et al.  Wave atoms and time upscaling of wave equations , 2009, Numerische Mathematik.

[2]  N. Tanushev Superpositions and higher order Gaussian beams , 2008 .

[3]  L. Demanet,et al.  Wave atoms and sparsity of oscillatory patterns , 2007 .

[4]  James Ralston,et al.  Mountain Waves and Gaussian Beams , 2007, Multiscale Model. Simul..

[5]  N. R. Hill,et al.  Gaussian beam migration , 1990 .

[6]  Hart F. Smith A parametrix construction for wave equations with $C^{1,1}$ coefficients , 1998 .

[7]  Laurent Demanet,et al.  Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..

[8]  E. Candès,et al.  New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .

[9]  Olof Runborg,et al.  Taylor expansion and discretization errors in Gaussian beam superposition , 2009, 0908.3416.

[10]  Victor P. Maslov,et al.  The complex WKB method for nonlinear equations I , 1994 .

[11]  Björn Engquist,et al.  Gaussian beam decomposition of high frequency wave fields using expectation-maximization , 2011, J. Comput. Phys..

[12]  Radjesvarane Alexandre,et al.  Gaussian beams summation for the wave equation in a convex domain , 2009 .

[13]  Lexing Ying,et al.  Fast Gaussian wavepacket transforms and Gaussian beams for the Schrödinger equation , 2010, J. Comput. Phys..

[14]  B. White,et al.  The stochastic caustic , 1984 .

[15]  L. Hörmander,et al.  On the existence and the regularity of solutions of linear pseudo-differential equations , 1971 .

[16]  Shingyu Leung,et al.  Eulerian Gaussian Beams for High Frequency Wave Propagation , 2007 .

[17]  E. Candès,et al.  The curvelet representation of wave propagators is optimally sparse , 2004, math/0407210.

[18]  M. M. Popov,et al.  Computation of wave fields in inhomogeneous media — Gaussian beam approach , 1982 .

[19]  Jianliang Qian,et al.  Eulerian Gaussian beams for Schrödinger equations in the semi-classical regime , 2009, J. Comput. Phys..