Fast Multiscale Gaussian Wavepacket Transforms and Multiscale Gaussian Beams for the Wave Equation
暂无分享,去创建一个
[1] Laurent Demanet,et al. Wave atoms and time upscaling of wave equations , 2009, Numerische Mathematik.
[2] N. Tanushev. Superpositions and higher order Gaussian beams , 2008 .
[3] L. Demanet,et al. Wave atoms and sparsity of oscillatory patterns , 2007 .
[4] James Ralston,et al. Mountain Waves and Gaussian Beams , 2007, Multiscale Model. Simul..
[5] N. R. Hill,et al. Gaussian beam migration , 1990 .
[6] Hart F. Smith. A parametrix construction for wave equations with $C^{1,1}$ coefficients , 1998 .
[7] Laurent Demanet,et al. Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..
[8] E. Candès,et al. New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .
[9] Olof Runborg,et al. Taylor expansion and discretization errors in Gaussian beam superposition , 2009, 0908.3416.
[10] Victor P. Maslov,et al. The complex WKB method for nonlinear equations I , 1994 .
[11] Björn Engquist,et al. Gaussian beam decomposition of high frequency wave fields using expectation-maximization , 2011, J. Comput. Phys..
[12] Radjesvarane Alexandre,et al. Gaussian beams summation for the wave equation in a convex domain , 2009 .
[13] Lexing Ying,et al. Fast Gaussian wavepacket transforms and Gaussian beams for the Schrödinger equation , 2010, J. Comput. Phys..
[14] B. White,et al. The stochastic caustic , 1984 .
[15] L. Hörmander,et al. On the existence and the regularity of solutions of linear pseudo-differential equations , 1971 .
[16] Shingyu Leung,et al. Eulerian Gaussian Beams for High Frequency Wave Propagation , 2007 .
[17] E. Candès,et al. The curvelet representation of wave propagators is optimally sparse , 2004, math/0407210.
[18] M. M. Popov,et al. Computation of wave fields in inhomogeneous media — Gaussian beam approach , 1982 .
[19] Jianliang Qian,et al. Eulerian Gaussian beams for Schrödinger equations in the semi-classical regime , 2009, J. Comput. Phys..