Flows Over Time with Flow-Dependent Transit Times

Quickest Flow Problem " N P-schwer ist, ist dieses Ergebnis aus komplexitätstheoretischer Sicht vermutlich nicht verbesserbar.

[1]  Vijay V. Vazirani,et al.  Approximation Algorithms , 2001, Springer Berlin Heidelberg.

[2]  Tim Roughgarden,et al.  How bad is selfish routing? , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[3]  Malachy Carey,et al.  An approach to modelling time-varying flows on congested networks , 2000 .

[4]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[5]  David E. Kaufman,et al.  Minimum travel time paths in dynamic networks with application to intelligent vehicle/highway systems , 1990 .

[6]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[7]  Nathan H. Gartner,et al.  Traffic Flow Theory - A State-of-the-Art Report: Revised Monograph on Traffic Flow Theory , 2002 .

[8]  Anthony Chen,et al.  A DYNAMIC TRAFFIC ASSIGNMENT MODEL WITH TRAFFIC-FLOW RELATIONSHIPS , 1995 .

[9]  Bruce Hoppe,et al.  Efficient Dynamic Network Flow Algorithms , 1995 .

[10]  Lisa Fleischer,et al.  Faster Algorithms for the Quickest Transshipment Problem , 2001, SIAM J. Optim..

[11]  Bin Ran,et al.  MODELING DYNAMIC TRANSPORTATION NETWORKS , 1996 .

[12]  Rolf H. Möhring,et al.  System-optimal Routing of Traffic Flows with User Constraints in Networks with Congestion System-optimal Routing of Traffic Flows with User Constraints in Networks with Congestion , 2022 .

[13]  Éva Tardos,et al.  “The quickest transshipment problem” , 1995, SODA '95.

[14]  Terry L. Friesz,et al.  Dynamic Network Traffic Assignment Considered as a Continuous Time Optimal Control Problem , 1989, Oper. Res..

[15]  Martin Skutella,et al.  Flows over time with load-dependent transit times , 2002, SODA '02.

[16]  W. L. Wilkinson,et al.  An Algorithm for Universal Maximal Dynamic Flows in a Network , 1971, Oper. Res..

[17]  Martin Skutella,et al.  The Quickest Multicommodity Flow Problem , 2002, IPCO.

[18]  Danny Raz,et al.  A simple efficient approximation scheme for the restricted shortest path problem , 2001, Oper. Res. Lett..

[19]  H. W. Hamacher,et al.  Mathematical Modelling of Evacuation Problems: A State of Art , 2001 .

[20]  D. R. Fulkerson,et al.  Constructing Maximal Dynamic Flows from Static Flows , 1958 .

[21]  Edward Minieka,et al.  Maximal, Lexicographic, and Dynamic Network Flows , 1973, Oper. Res..

[22]  Andrew V. Goldberg,et al.  Finding minimum-cost circulations by canceling negative cycles , 1989, JACM.

[23]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[24]  Bin Ran,et al.  Dynamic Urban Transportation Network Models: Theory and Implications for Intelligent Vehicle-Highway Systems , 1994 .

[25]  Martin Skutella,et al.  Minimum cost flows over time without intermediate storage , 2003, SODA '03.

[26]  Dorit S. Hochba,et al.  Approximation Algorithms for NP-Hard Problems , 1997, SIGA.

[27]  Martin Skutella,et al.  Multicommodity flows over time: Efficient algorithms and complexity , 2003, Theor. Comput. Sci..

[28]  David Gale,et al.  Transient flows in networks. , 1959 .

[29]  M. R. Rao,et al.  Combinatorial Optimization , 1992, NATO ASI Series.

[30]  Che-Fu Hsueh,et al.  A model and an algorithm for the dynamic user-optimal route choice problem , 1998 .

[31]  Nathan Myers,et al.  A new and useful template technique: “traits” , 1996 .

[32]  Deepak K. Merchant,et al.  A Model and an Algorithm for the Dynamic Traffic Assignment Problems , 1978 .

[33]  Martin Skutella,et al.  Time-Expanded Graphs for Flow-Dependent Transit Times , 2002, ESA.

[34]  Nimrod Megiddo,et al.  Combinatorial optimization with rational objective functions , 1978, Math. Oper. Res..

[35]  Malachy Carey,et al.  Optimal Time-Varying Flows on Congested Networks , 1987, Oper. Res..

[36]  George L. Nemhauser,et al.  Handbooks in operations research and management science , 1989 .

[37]  Ravindra K. Ahuja,et al.  A capacity scaling algorithm for the constrained maximum flow problem , 1995, Networks.

[38]  Gerhard J. Woeginger,et al.  Minimum-cost dynamic flows: The series-parallel case , 2004, Networks.

[39]  Giorgio Gambosi,et al.  Complexity and Approximation , 1999, Springer Berlin Heidelberg.

[40]  Éva Tardos,et al.  Efficient continuous-time dynamic network flow algorithms , 1998, Oper. Res. Lett..

[41]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[42]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[43]  Bruce N Janson,et al.  Dynamic traffic assignment for urban road networks , 1991 .

[44]  Andrew B. Philpott,et al.  Continuous-Time Flows in Networks , 1990, Math. Oper. Res..

[45]  George L. Nemhauser,et al.  Optimality Conditions for a Dynamic Traffic Assignment Model , 1978 .

[46]  N. Biggs GEOMETRIC ALGORITHMS AND COMBINATORIAL OPTIMIZATION: (Algorithms and Combinatorics 2) , 1990 .

[47]  James B. Orlin,et al.  A faster strongly polynomial minimum cost flow algorithm , 1993, STOC '88.

[48]  Warren B. Powell,et al.  Stochastic and dynamic networks and routing , 1995 .

[49]  S. Sethi,et al.  The Dynamic Transportation Problem: A Survey , 1980 .

[50]  Refael Hassin,et al.  Approximation Schemes for the Restricted Shortest Path Problem , 1992, Math. Oper. Res..

[51]  Rainer E. Burkard,et al.  The quickest flow problem , 1993, ZOR Methods Model. Oper. Res..

[52]  M. Iri A NEW METHOD OF SOLVING TRANSPORTATION· NETWORK PROBLEMS , 1960 .

[53]  J. George Shanthikumar,et al.  Convex separable optimization is not much harder than linear optimization , 1990, JACM.

[54]  Jay E. Aronson,et al.  A survey of dynamic network flows , 1989 .

[55]  Robert L. Smith,et al.  A MIXED INTEGER LINEAR PROGRAMMING MODEL FOR DYNAMIC ROUTE GUIDANCE , 1998 .

[56]  Robert L. Smith,et al.  User-equilibrium properties of fixed points in dynamic traffic assignment 1 1 This research was supp , 1998 .

[57]  Norman Zadeh,et al.  A bad network problem for the simplex method and other minimum cost flow algorithms , 1973, Math. Program..

[58]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[59]  Terry L. Friesz,et al.  A Variational Inequality Formulation of the Dynamic Network User Equilibrium Problem , 1993, Oper. Res..

[60]  J. G. Pierce,et al.  Geometric Algorithms and Combinatorial Optimization , 2016 .

[61]  Robert G. Busacker,et al.  A PROCEDURE FOR DETERMINING A FAMILY OF MINIMUM-COST NETWORK FLOW PATTERNS , 1960 .