A minimal mechanism for bacterial pattern formation

Colonies of Escherichia coli or Salmonella typhimurium form geometrically complex patterns when exposed to, or feeding on, intermediates of the tricarboxylic acid (TCA) cycle. In response to the TCA cycle intermediate, the bacteria secrete aspartate, a potent chemo–attractant. As a result, the cells form high density aggregates arranged in striking regular patterns. The simplest are temporary spots formed in a liquid medium by both E. coli and S. typhimurium. In semi–solid medium S. typhimurium forms concentric rings arising from a low–density bacterial lawn, which are either continuous or spotted, whereas E. coli forms complex patterns arising from a dense swarm ring, including interdigitated spots (also called sunflower spirals), radial spots, radial stripes and chevrons. We present a mathematical model which captures all three of the pattern forming processes experimentally observed in both E. coli and S. typhimurium, using a minimum of assumptions.

[1]  M. Brenner,et al.  Physical mechanisms for chemotactic pattern formation by bacteria. , 1998, Biophysical journal.

[2]  L. Segel,et al.  Traveling bands of chemotactic bacteria: a theoretical analysis. , 1971, Journal of theoretical biology.

[3]  Fordyce A. Davidson,et al.  Context-dependent macroscopic patterns in growing and interacting mycelial networks , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[4]  H. Berg,et al.  Complex patterns formed by motile cells of Escherichia coli , 1991, Nature.

[5]  R. M. Ford,et al.  Analysis of chemotactic bacterial distributions in population migration assays using a mathematical model applicable to steep or shallow attractant gradients , 1991 .

[6]  D E Koshland,et al.  Quantitative analysis of bacterial migration in chemotaxis. , 1972, Nature: New biology.

[7]  Eshel Ben-Jacob,et al.  Complex bacterial patterns , 1995, Nature.

[8]  J. Murray,et al.  Model and analysis of chemotactic bacterial patterns in a liquid medium , 1999, Journal of mathematical biology.

[9]  H. Berg,et al.  Spatio-temporal patterns generated by Salmonella typhimurium. , 1995, Biophysical journal.

[10]  L. Segel,et al.  Model for chemotaxis. , 1971, Journal of theoretical biology.

[11]  A. Mochizuki,et al.  Modeling spatio-temporal patterns generated by Bacillus subtilis. , 1997, Journal of theoretical biology.

[12]  I. Lapidus,et al.  Model for the chemotactic response of a bacterial population. , 1976, Biophysical journal.

[13]  W. N. Reynolds,et al.  Aggregation Patterns in Stressed Bacteria. , 1995, Physical review letters.

[14]  L. G. Stern,et al.  Fractional step methods applied to a chemotaxis model , 2000, Journal of mathematical biology.

[15]  H. Berg,et al.  Chemotaxis of bacteria in glass capillary arrays. Escherichia coli, motility, microchannel plate, and light scattering. , 1990, Biophysical journal.

[16]  J. A. Quinn,et al.  Random motility of swimming bacteria: Single cells compared to cell populations , 1994 .

[17]  H. Berg Random Walks in Biology , 2018 .

[18]  H. Berg,et al.  Dynamics of formation of symmetrical patterns by chemotactic bacteria , 1995, Nature.