A novel diketopyrrolopyrrole (DPP)-based [2]rotaxane for highly selective optical sensing of fluoride.

A novel [2]rotaxane based on an orthogonal H-bonded motif and 3,6-di(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (DPP) with controlled topicity was successfully constructed, displaying excellent stimulated responses toward anion and solvent polarity. The preorganized host selectively recognized F(-) with high optical sensitivity and reversibility via enhanced positive cooperativity and noncovalent interaction by evidence of a shorter fluorescence lifetime.

[1]  Jean-Marie Lehn,et al.  Supramolecular Chemistry: Concepts And Perspectives , 2014 .

[2]  M. Prato,et al.  A three-level luminescent response in a pyrene/ferrocene rotaxane. , 2013, Organic letters.

[3]  B. Moyer,et al.  KF and CsF recognition and extraction by a calix[4]crown-5 strapped calix[4]pyrrole multitopic receptor. , 2012, Journal of the American Chemical Society.

[4]  D. Qu,et al.  A switchable ferrocene-based [1]rotaxane with an electrochemical signal output. , 2012, Organic letters.

[5]  F. D’Souza,et al.  Supramolecular electron transfer by anion binding. , 2012, Chemical communications.

[6]  N. Muangsin,et al.  Azocalix[4]arene strapped calix[4]pyrrole: a confirmable fluoride sensor. , 2012, Organic letters.

[7]  D. Qu,et al.  Dual-mode control of PET process in a ferrocene-functionalized [2]rotaxane with high-contrast fluorescence output. , 2012, Organic letters.

[8]  P. Beer,et al.  A redox-active [3]rotaxane capable of binding and electrochemically sensing chloride and sulfate anions. , 2011, Chemical communications.

[9]  D. Schuster,et al.  Alternative demetalation method for Cu(I)-phenanthroline-based catenanes and rotaxanes. , 2011, Organic letters.

[10]  J. F. Stoddart,et al.  Monofunctionalized pillar[5]arene as a host for alkanediamines. , 2011, Journal of the American Chemical Society.

[11]  Yu Liu,et al.  pH-Controlled intramolecular charge-transfer behavior in bistable [3]rotaxane. , 2010, Organic letters.

[12]  P. J. Lusby,et al.  Sequence isomerism in [3]rotaxanes. , 2010, Journal of the American Chemical Society.

[13]  Bradley D. Smith,et al.  Squaraine rotaxane as a reversible optical chloride sensor. , 2010, Chemistry.

[14]  Chien‐Chen Lai,et al.  A guanidinium ion-based anion- and solvent polarity-controllable molecular switch. , 2009, Organic letters.

[15]  P. J. Lusby,et al.  An ion-pair template for rotaxane formation and its exploitation in an orthogonal interaction anion-switchable molecular shuttle. , 2008, Angewandte Chemie.

[16]  V. Lynch,et al.  Crown-6-calix[4]arene-capped calix[4]pyrrole: an ion-pair receptor for solvent-separated CsF ions. , 2008, Journal of the American Chemical Society.

[17]  Shu Wang,et al.  A molecular shuttle for driving a multilevel fluorescence switch. , 2008, Chemistry.

[18]  Laure-Emmanuelle Perret-Aebi,et al.  A switchable palladium-complexed molecular shuttle and its metastable positional isomers. , 2007, Journal of the American Chemical Society.

[19]  Yi‐Hung Liu,et al.  Using acetate anions to induce translational isomerization in a neutral urea-based molecular switch. , 2007, Angewandte Chemie.

[20]  Duong Tuan Quang,et al.  Calixarene-derived fluorescent probes. , 2007, Chemical reviews.

[21]  P. Beer,et al.  Interweaving anion templation. , 2007, Accounts of chemical research.

[22]  Yi‐Hung Liu,et al.  Use of anions to allow translational isomerism of a [2]rotaxane. , 2007, Chemistry.

[23]  I. Korendovych,et al.  Anion binding to monotopic and ditopic macrocyclic amides. , 2006, Organic letters.

[24]  J. Vicens,et al.  Novel C3v-symmetrical N7-Hexahomotriazacalix[3]cryptand: a highly efficient receptor for halide anions. , 2006, Organic letters.

[25]  Pin-Nan Cheng,et al.  A macrocycle/molecular-clip complex that functions as a quadruply controllable molecular switch. , 2006, Chemistry.

[26]  Ning Wang,et al.  Energy transfer switching in a bistable molecular machine. , 2005, Organic letters.

[27]  Julius Rebek,et al.  Fluorescence resonance energy transfer across a mechanical bond of a rotaxane. , 2005, Chemical communications.

[28]  David A Leigh,et al.  Rare and diverse binding modes introduced through mechanical bonding. , 2005, Angewandte Chemie.

[29]  T. Takata,et al.  Synthesis of novel interlocked systems utilizing a palladium complex with 2,6-pyridinedicarboxamide-based tridentate macrocyclic ligand , 2004 .

[30]  David A Leigh,et al.  A 3D interlocked structure from a 2D template: structural requirements for the assembly of a square-planar metal-coordinated [2]rotaxane. , 2004, Angewandte Chemie.

[31]  T. Swager,et al.  Rotaxanated conjugated sensory polymers. , 2004, Journal of the American Chemical Society.

[32]  He Tian,et al.  A light-driven rotaxane molecular shuttle with dual fluorescence addresses. , 2004, Organic letters.

[33]  Félix Sancenón,et al.  Fluorogenic and chromogenic chemosensors and reagents for anions. , 2003, Chemical reviews.

[34]  Francesco Zerbetto,et al.  Remarkable positional discrimination in bistable light- and heat-switchable hydrogen-bonded molecular shuttles. , 2003, Angewandte Chemie.

[35]  Philip A. Gale,et al.  Pyrrolic and polypyrrolic anion binding agents , 2003 .

[36]  David A. Leigh,et al.  Peptide-Based Molecular Shuttles , 1997 .

[37]  F. Schmidtchen,et al.  Artificial Organic Host Molecules for Anions. , 1997, Chemical reviews.

[38]  Z. Hao,et al.  Some aspects of organic pigments , 1997 .

[39]  F. Quiocho,et al.  Sulphate sequestered in the sulphate-binding protein of Salmonella typhimurium is bound solely by hydrogen bonds , 1985, Nature.

[40]  F. A. Smith Pharmacology of Fluorides , 1970, Handbuch der experimentellen Pharmakologie / Handbook of Experimental Pharmacology.