Unidirectional evanescent-wave coupling from circularly polarized electric and magnetic dipoles: An angular spectrum approach

Unidirectional evanescent-wave coupling from circularly polarized dipole sources is one of the most striking types of evidence of spin-orbit interactions of light and an inherent property of circularly polarized dipoles. Polarization handedness self-determines propagation direction of guided modes. In this paper, we compare two different approaches currently used to describe this phenomenon: the first requires the evaluation of the coupling amplitude between dipole and waveguide modes, while the second is based on the calculation of the angular spectrum of the dipole. We present an analytical expression of the angular spectrum of dipole radiation, unifying the description for both electric and magnetic dipoles. The symmetries unraveled by the implemented formalism show the existence of specific terms in the dipole spectrum which can be recognized as being directly responsible for directional evanescent-wave coupling. This provides a versatile tool for both a comprehensive understanding of the phenomenon and a fully controllable engineering of directionality of guided modes.

[1]  John David Jackson,et al.  Classical Electrodynamics , 2020, Nature.

[2]  Amadeu Griol,et al.  On-Chip Optimal Stokes Nanopolarimetry Based on Spin-Orbit Interaction of Light. , 2017, Nano letters.

[3]  Peter Zoller,et al.  Chiral quantum optics , 2016, Nature.

[4]  S. Bozhevolnyi,et al.  Resonant unidirectional and elastic scattering of surface plasmon polaritons by high-refractive index dielectric nanoparticles , 2015, 1609.06112.

[5]  Jürgen Volz,et al.  Nanophotonic Optical Isolator Controlled by the Internal State of Cold Atoms , 2015 .

[6]  Lorenzo Marrucci,et al.  Spin–orbit photonics , 2015, Nature Photonics.

[7]  Gerd Leuchs,et al.  From transverse angular momentum to photonic wheels , 2015, Nature Photonics.

[8]  F. J. Rodríguez-Fortuño,et al.  Lateral forces on circularly polarizable particles near a surface , 2015, Nature Communications.

[9]  T. Thundat,et al.  Universal spin-momentum locked optical forces , 2015, 1511.02305.

[10]  Federico Capasso,et al.  Lateral chirality-sorting optical forces , 2015, Proceedings of the National Academy of Sciences.

[11]  Alejandro Martínez,et al.  Transverse Spin and Spin-Orbit Coupling in Silicon Waveguides , 2015, IEEE Photonics Technology Letters.

[12]  M. S. Skolnick,et al.  Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer , 2015, Nature Communications.

[13]  F. J. Rodríguez-Fortuño,et al.  Spin–orbit interactions of light , 2015, Nature Photonics.

[14]  S. Scheel,et al.  Directional spontaneous emission and lateral Casimir-Polder force on an atom close to a nanofiber , 2015, 1505.01275.

[15]  Z. Jacob,et al.  Universal spin-momentum locking of evanescent waves , 2015, 2016 Conference on Lasers and Electro-Optics (CLEO).

[16]  N. Rotenberg,et al.  Nanophotonic control of circular dipole emission , 2015, Nature Communications.

[17]  F. Nori,et al.  Quantum spin Hall effect of light , 2015, Science.

[18]  A. Rauschenbeutel,et al.  Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide , 2014, Nature Communications.

[19]  Andrea Aiello,et al.  Measuring the transverse spin density of light. , 2014, Physical review letters.

[20]  F. J. Rodríguez-Fortuño,et al.  Spin–orbit coupling in surface plasmon scattering by nanostructures , 2014, Nature Communications.

[21]  F. J. Rodríguez-Fortuño,et al.  Resolving Light Handedness with an on-Chip Silicon Microdisk , 2014 .

[22]  A. Rauschenbeutel,et al.  Chiral nanophotonic waveguide interface based on spin-orbit interaction of light , 2014, Science.

[23]  J. Rarity,et al.  Polarization Engineering in Photonic Crystal Waveguides for Spin-Photon Entanglers. , 2014, Physical review letters.

[24]  A. Rauschenbeutel,et al.  Anisotropy in scattering of light from an atom into the guided modes of a nanofiber , 2014, 1406.0108.

[25]  F. J. Rodríguez-Fortuño,et al.  Universal method for the synthesis of arbitrary polarization states radiated by a nanoantenna , 2014, 1510.01530.

[26]  Ortwin Hess,et al.  Completely stopped and dispersionless light in plasmonic waveguides. , 2014, Physical review letters.

[27]  G. Leuchs,et al.  Polarization tailored light driven directional optical nanobeacon. , 2014, Nano letters.

[28]  B. Chichkov,et al.  Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses , 2014, Nature Communications.

[29]  Pavel Ginzburg,et al.  Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes , 2014, Nature Communications.

[30]  S. B. Wang,et al.  Lateral optical force on chiral particles near a surface , 2013, Nature Communications.

[31]  M. S. Skolnick,et al.  Waveguide-coupled photonic crystal cavity for quantum dot spin readout. , 2013, Optics express.

[32]  I. Brener,et al.  Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. , 2013, ACS nano.

[33]  Franco Nori,et al.  Extraordinary momentum and spin in evanescent waves , 2013, Nature Communications.

[34]  F. J. Rodríguez-Fortuño,et al.  Sorting linearly polarized photons with a single scatterer. , 2013, Optics letters.

[35]  F. J. Rodríguez-Fortuño,et al.  Near-Field Interference for the Unidirectional Excitation of Electromagnetic Guided Modes , 2013, Science.

[36]  Y. Wang,et al.  Photonic Spin Hall Effect at Metasurfaces , 2013, Science.

[37]  M. S. Skolnick,et al.  Interfacing spins in an InGaAs quantum dot to a semiconductor waveguide circuit using emitted photons. , 2013, Physical review letters.

[38]  Lukas Novotny,et al.  Demonstration of zero optical backscattering from single nanoparticles. , 2012, Nano letters.

[39]  Jean-Jacques Greffet,et al.  Superlens in the time domain. , 2012, Physical review letters.

[40]  F. J. García de abajo,et al.  Plasmon scattering from single subwavelength holes. , 2012, Physical review letters.

[41]  F. Nori,et al.  Transverse spin of a surface polariton , 2012 .

[42]  Ebrahim Karimi,et al.  Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications , 2011 .

[43]  Fernando Moreno,et al.  Light scattering by an array of electric and magnetic nanoparticles. , 2010, Optics express.

[44]  S. Scheel,et al.  MACROSCOPIC QUANTUM ELECTRODYNAMICS — CONCEPTS AND APPLICATIONS , 2008, 0902.3586.

[45]  F. Kien,et al.  22aZA-2 Angular momentum of light in an optical nanofiber , 2008 .

[46]  O. Keller Principles of Nano-Optics , 2007 .

[47]  J. Swanson,et al.  Cell membrane orientation visualized by polarized total internal reflection fluorescence. , 1999, Biophysical journal.

[48]  L. Mandel,et al.  Optical Coherence and Quantum Optics , 1995 .

[49]  A. Ishimaru Electromagnetic Wave Propagation, Radiation, and Scattering , 1990 .

[50]  B. S. Westcott,et al.  Electromagnetic wave propagation , 1979, Nature.

[51]  L. Marrucci Quantum optics: Spin gives direction , 2015 .

[52]  L. Sehgal,et al.  Γ and B , 2004 .