Time dependent reliability model incorporating continuum damage mechanics for high-temperature ceramics

Presently there are many opportunities for the application of ceramic materials at elevated temperatures. In the near future ceramic materials are expected to supplant high temperature metal alloys in a number of applications. It thus becomes essential to develop a capability to predict the time-dependent response of these materials. The creep rupture phenomenon is discussed, and a time-dependent reliability model is outlined that integrates continuum damage mechanics principles and Weibull analysis. Several features of the model are presented in a qualitative fashion, including predictions of both reliability and hazard rate. In addition, a comparison of the continuum and the microstructural kinetic equations highlights a strong resemblance in the two approaches.

[1]  David I. G. Jones Stress Rupture of Ceramics: Time-Temperature Relationships , 1987 .

[2]  Sumio Murakami,et al.  A Continuum Theory of Creep and Creep Damage , 1981 .

[3]  V. V. Bolotin Verification and Estimation of Stochastic Models of Fracture , 1979 .

[4]  A. Evans,et al.  High temperature failure initiation in liquid phase sintered materials , 1983 .

[5]  J. P. Gyekenyesi,et al.  SCARE: A Postprocessor Program to MSC/NASTRAN for Reliability Analysis of Structural Ceramic Components , 1986 .

[6]  A. Cocks The nucleation and growth of voids in a material containing a distribution of grain-boundary particles , 1985 .

[7]  A. Evans,et al.  High‐Temperature Failure of Polycrystalline Alumina: III, Failure Times , 1984 .

[8]  F. A. Leckie,et al.  Advances in Creep Mechanics , 1981 .

[9]  R. Raj,et al.  De-adhesion by the growth of penny-shaped bubbles in an adhesive layer , 1975 .

[10]  George D. Quinn,et al.  Delayed failure of a commercial vitreous bonded alumina , 1987 .

[11]  F. A. Leckie,et al.  The micro- and macromechanics of creep rupture , 1986 .

[12]  Kwai S. Chan,et al.  Stochastic aspects of creep cavitation in ceramics , 1987 .

[13]  Creep of ceramics , 1988 .

[14]  Robert L. Coble,et al.  A Model for Boundary Diffusion Controlled Creep in Polycrystalline Materials , 1963 .

[15]  Conyers Herring,et al.  Diffusional Viscosity of a Polycrystalline Solid , 1950 .

[16]  J. B. Martin A Note on the Determination of an Upper Bound on Displacement Rates for Steady Creep Problems , 1966 .

[17]  R. E. Tressler,et al.  On the static fatigue limit at elevated temperatures , 1986 .

[18]  E. Fuller,et al.  Structural reliability of ceramic materials , 1985 .

[19]  A. A. Griffith The Phenomena of Rupture and Flow in Solids , 1921 .

[20]  F. Leckie,et al.  Physically based modelling of remanent creep life , 1988 .

[21]  D. E. Roberts,et al.  Damage‐Enhanced Creep in a Siliconized Silicon Carbide: Phenomenology , 1988 .

[22]  Dusan Krajcinovic,et al.  Distributed Damage Theory of Beams in Pure Bending , 1979 .

[23]  T. Langdon,et al.  Creep of ceramics , 1983 .

[24]  A. Evans,et al.  Duality in the Creep Rupture of a Polycrystalline Alumina , 1985 .

[25]  M. F. Ashby,et al.  Intergranular fracture during power-law creep under multiaxial stresses , 1980 .

[26]  Dusan Krajcinovic,et al.  Statistical aspects of the continuous damage theory , 1982 .

[27]  A. Rosenfield,et al.  Estimating damage laws from bend-test data , 1985 .

[28]  R. Raj,et al.  CREEP FRACTURE IN CERAMICS CONTAINING SMALL AMOUNTS OF A LIQUID PHASE , 1982 .