On convergence to equilibria for the Keller–Segel chemotaxis model
暂无分享,去创建一个
[1] Miguel A. Herrero,et al. Finite-time aggregation into a single point in a reaction - diffusion system , 1997 .
[2] Takashi Suzuki,et al. Chemotactic collapse in a parabolic system of mathematical biology , 2000 .
[3] H. Duport,et al. Sur les équations aux dérivées partielles , 1900 .
[4] A non-smooth version of the Lojasiewicz–Simon theorem with applications to non-local phase-field systems , 2004 .
[5] L. Simon. Asymptotics for a class of non-linear evolution equations, with applications to geometric problems , 1983 .
[6] Takashi Suzuki,et al. Concentration lemma, Brezis-Merle type inequality, and a parabolic system of chemotaxis , 2001 .
[7] J. Lions,et al. Problèmes aux limites non homogènes et applications , 1968 .
[8] L. Segel,et al. Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.
[9] Dirk Horstmann,et al. F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences , 2022 .
[10] Dirk Horstmann,et al. Boundedness vs. blow-up in a chemotaxis system , 2005 .
[11] Herbert Gajewski,et al. A descent method for the free energy of multicomponent systems , 2006 .
[12] Atsushi Yagi,et al. NORM BEHAVIOR OF SOLUTIONS TO A PARABOLIC SYSTEM OF CHEMOTAXIS , 1997 .
[13] M. A. Herrero,et al. A blow-up mechanism for a chemotaxis model , 1997 .
[14] Herbert Gajewski,et al. On a nonlocal phase separation model , 2003 .
[15] W. D. Evans,et al. PARTIAL DIFFERENTIAL EQUATIONS , 1941 .
[16] Eduard Feireisl,et al. Convergence for Semilinear Degenerate Parabolic Equations in Several Space Dimensions , 2000 .
[17] H. Gajewski,et al. Global Behaviour of a Reaction‐Diffusion System Modelling Chemotaxis , 1998 .
[18] Piotr Biler,et al. LOCAL AND GLOBAL SOLVABILITY OF SOME PARABOLIC SYSTEMS MODELLING CHEMOTAXIS , 1998 .
[19] S. Łojasiewicz,et al. On the gradient inequality , 1999 .