What planar lipid membranes tell us about the pore-forming activity of cholesterol-dependent cytolysins.

[1]  G. Anderluh,et al.  Effects of MACPF/CDC proteins on lipid membranes , 2013, Cellular and Molecular Life Sciences.

[2]  S. Cassidy,et al.  More Than a Pore: The Cellular Response to Cholesterol-Dependent Cytolysins , 2013, Toxins.

[3]  H. Bayley,et al.  Lipid-coated hydrogel shapes as components of electrical circuits and mechanical devices , 2012, Scientific Reports.

[4]  R. Tweten,et al.  Identification and Characterization of the First Cholesterol-Dependent Cytolysins from Gram-Negative Bacteria , 2012, Infection and Immunity.

[5]  Minchen Chien,et al.  PEG-Labeled Nucleotides and Nanopore Detection for Single Molecule DNA Sequencing by Synthesis , 2012, Scientific Reports.

[6]  D. DeVoe,et al.  Dynamics of Ceramide Channels Detected Using a Microfluidic System , 2012, PloS one.

[7]  P. Cossart,et al.  Listeriolysin O: the Swiss army knife of Listeria. , 2012, Trends in microbiology.

[8]  K. Mann,et al.  Targeting Her-2+ breast cancer cells with bleomycin immunoliposomes linked to LLO. , 2012, Molecular pharmaceutics.

[9]  R. Tweten,et al.  Membrane assembly of the cholesterol-dependent cytolysin pore complex. , 2012, Biochimica et biophysica acta.

[10]  M. Pangburn,et al.  Assembly and regulation of the membrane attack complex based on structures of C5b6 and sC5b9. , 2012, Cell reports.

[11]  M. Parker,et al.  Structure of the lectin regulatory domain of the cholesterol-dependent cytolysin lectinolysin reveals the basis for its lewis antigen specificity. , 2012, Structure.

[12]  B. Konforti,et al.  More than the sum of its parts. , 2012, Cell reports.

[13]  B. Le Pioufle,et al.  Activity monitoring of functional OprM using a biomimetic microfluidic device. , 2012, The Analyst.

[14]  R. Liddington,et al.  Structure of Complement C6 Suggests a Mechanism for Initiation and Unidirectional, Sequential Assembly of Membrane Attack Complex (MAC)*♦ , 2012, The Journal of Biological Chemistry.

[15]  H. Bayley,et al.  Protein Detection by Nanopores Equipped with Aptamers , 2012, Journal of the American Chemical Society.

[16]  J. Lakey,et al.  pH dependence of listeriolysin O aggregation and pore‐forming ability , 2012, The FEBS journal.

[17]  M. Serra,et al.  Pore-forming Toxins , 2011 .

[18]  H. Bayley,et al.  Rapid assembly of a multimeric membrane protein pore. , 2011, Biophysical journal.

[19]  R. Collier,et al.  Ultrasensitive detection of protein translocated through toxin pores in droplet-interface bilayers , 2011, Proceedings of the National Academy of Sciences.

[20]  G. Anderluh,et al.  Human Perforin Employs Different Avenues to Damage Membranes* , 2010, The Journal of Biological Chemistry.

[21]  A. Berezhkovskii,et al.  Blockage of anthrax PA63 pore by a multicharged high-affinity toxin inhibitor. , 2010, Biophysical journal.

[22]  Xuemei Li,et al.  Crystal structure of cytotoxin protein suilysin from Streptococcus suis , 2010, Protein & Cell.

[23]  B. Bishop,et al.  Cellular Functions and X-ray Structure of Anthrolysin O, a Cholesterol-dependent Cytolysin Secreted by Bacillus anthracis* , 2009, Journal of Biological Chemistry.

[24]  H. Bayley,et al.  Continuous base identification for single-molecule nanopore DNA sequencing. , 2009, Nature nanotechnology.

[25]  H. Bayley,et al.  Simultaneous measurement of ionic current and fluorescence from single protein pores. , 2009, Journal of the American Chemical Society.

[26]  Kyung-Dall Lee,et al.  Enhanced gene delivery using disulfide-crosslinked low molecular weight polyethylenimine with listeriolysin o-polyethylenimine disulfide conjugate. , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[27]  J. Lakey,et al.  Disparate proteins use similar architectures to damage membranes. , 2008, Trends in biochemical sciences.

[28]  P. E. Granum,et al.  Demonstration of a cholesterol-dependent cytolysin in a noninsecticidal Bacillus sphaericus strain and evidence for widespread distribution of the toxin within the species. , 2008, FEMS microbiology letters.

[29]  Ashley M Buckle,et al.  The MACPF/CDC family of pore-forming toxins , 2008, Cellular microbiology.

[30]  F. G. van der Goot,et al.  Pore formation: an ancient yet complex form of attack. , 2008, Biochimica et biophysica acta.

[31]  P. Andrew,et al.  Pneumolysin generates multiple conductance pores in the membrane of nucleated cells. , 2008, Biochemical and biophysical research communications.

[32]  S. Gelber,et al.  Functional and Phylogenetic Characterization of Vaginolysin, the Human-Specific Cytolysin from Gardnerella vaginalis , 2008, Journal of bacteriology.

[33]  R. Lemmens‐Gruber,et al.  IFN-β Increases Listeriolysin O-Induced Membrane Permeabilization and Death of Macrophages1 , 2008, The Journal of Immunology.

[34]  Helen R Saibil,et al.  Friend or foe: the same fold for attack and defense. , 2008, Trends in immunology.

[35]  Y. Santoso,et al.  Enhanced stability and fluidity in droplet on hydrogel bilayers for measuring membrane protein diffusion. , 2007, Nano letters.

[36]  R. Benz,et al.  Anthrax lethal factor (LF) mediated block of the anthrax protective antigen (PA) ion channel: effect of ionic strength and voltage. , 2006, Biochemistry.

[37]  R. Tweten,et al.  Cholesterol-Dependent Cytolysins, a Family of Versatile Pore-Forming Toxins , 2005, Infection and Immunity.

[38]  R. Gilbert Inactivation and activity of cholesterol-dependent cytolysins: what structural studies tell us. , 2005, Structure.

[39]  M. Parker,et al.  Pore-forming protein toxins: from structure to function. , 2005, Progress in biophysics and molecular biology.

[40]  M. Parker,et al.  Insights into the action of the superfamily of cholesterol-dependent cytolysins from studies of intermedilysin. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[41]  P. Sims,et al.  Human CD59 is a receptor for the cholesterol-dependent cytolysin intermedilysin , 2004, Nature Structural &Molecular Biology.

[42]  R. Collier,et al.  Evidence that translocation of anthrax toxin's lethal factor is initiated by entry of its N terminus into the protective antigen channel. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Zhifeng Shao,et al.  Vertical collapse of a cytolysin prepore moves its transmembrane β‐hairpins to the membrane , 2004, The EMBO journal.

[44]  R. Tweten,et al.  Assembly and Topography of the Prepore Complex in Cholesterol-dependent Cytolysins* , 2003, Journal of Biological Chemistry.

[45]  R. Tweten,et al.  Structural insights into the membrane-anchoring mechanism of a cholesterol-dependent cytolysin , 2002, Nature Structural Biology.

[46]  E. Domann,et al.  Listeriolysin of Listeria monocytogenes forms Ca2+‐permeable pores leading to intracellular Ca2+ oscillations , 2002, Cellular microbiology.

[47]  R. Gilbert,et al.  Pore-forming toxins , 2002, Cellular and Molecular Life Sciences CMLS.

[48]  R. Tweten,et al.  The mechanism of pore assembly for a cholesterol-dependent cytolysin: formation of a large prepore complex precedes the insertion of the transmembrane beta-hairpins. , 2000, Biochemistry.

[49]  C. Boulin,et al.  Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter , 2000 .

[50]  S. Bezrukov,et al.  Polymeric nonelectrolytes to probe pore geometry: application to the alpha-toxin transmembrane channel. , 1999, Biophysical journal.

[51]  Y. Korchev,et al.  A conserved tryptophan in pneumolysin is a determinant of the characteristics of channels formed by pneumolysin in cells and planar lipid bilayers. , 1998, The Biochemical journal.

[52]  Michael W Parker,et al.  Structure of a Cholesterol-Binding, Thiol-Activated Cytolysin and a Model of Its Membrane Form , 1997, Cell.

[53]  Y. Korchev,et al.  Differential sensitivity of pneumolysin-induced channels to gating by divalent cations , 1992, The Journal of Membrane Biology.

[54]  J. Shiver,et al.  Formation of ion-conducting channels by the membrane attack complex proteins of complement. , 1991, Biophysical journal.

[55]  A. Delcour,et al.  Electrophysiological characterization of bacterial pore-forming proteins in planar lipid bilayers. , 2013, Methods in molecular biology.

[56]  R. Gilbert Cholesterol-dependent cytolysins. , 2010, Advances in experimental medicine and biology.

[57]  G. Menestrina,et al.  Liposomes in the study of pore-forming toxins. , 2003, Methods in enzymology.

[58]  '. Robertblumenthal Mechanism of Tetanolysin-Induced Membrane Damage : Studies with Black Lipid Membranes , 2003 .

[59]  M. Parker,et al.  The cholesterol-dependent cytolysins. , 2001, Current topics in microbiology and immunology.

[60]  G. Menestrina,et al.  Characterization of molecular properties of pore-forming toxins with planar lipid bilayers. , 2000, Methods in molecular biology.

[61]  G. Menestrina,et al.  Pore-forming toxins: experiments with S. aureus alpha-toxin, C. perfringens theta-toxin and E. coli haemolysin in lipid bilayers, liposomes and intact cells. , 1990, Toxicon : official journal of the International Society on Toxinology.

[62]  G. Menestrina,et al.  Pore-forming toxins: Experiments with S. aureus α-toxin, C. perfringens θ-toxin and E. coli haemolysin in lipid bilayers, liposomes and intact cells , 1990 .

[63]  S. Spragg Biophysical chemistry , 1979, Nature.