The Conditions for the Convergence of Power Scaled Matrices and Applications
暂无分享,去创建一个
[1] Xuzhou Chen,et al. ON THE CONVERGENCE OF POWER SCALED CESARO SUMS , 1997 .
[2] Josef Stoer,et al. Numerische Mathematik 1 , 1989 .
[3] D. Sorensen. Numerical methods for large eigenvalue problems , 2002, Acta Numerica.
[4] G. Stewart. Methods of Simultaneous Iteration for Calculating Eigenvectors of Matrices , 1975 .
[5] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[6] Alston S. Householder,et al. The Theory of Matrices in Numerical Analysis , 1964 .
[7] Audra E. Kosh,et al. Linear Algebra and its Applications , 1992 .
[8] William G. Poole,et al. A geometric theory for the QR, LU and power iterations. , 1973 .
[9] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[10] David S. Watkins,et al. Some Perspectives on the Eigenvalue Problem , 1993, SIAM Rev..
[11] David S. Watkins,et al. Understanding the $QR$ Algorithm , 1982 .
[12] Adi Ben-Israel. A volume associated with m x n matrices , 1992 .
[13] F. L. Bauer. Das Verfahren der Treppeniteration und verwandte Verfahren zur Lösung algebraischer Eigenwertprobleme , 1957 .
[14] Xuzhou Chen,et al. The semi-iterative method applied to the hyper-power iteration , 2005, Numer. Linear Algebra Appl..
[15] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[16] The Picard iteration and its application , 2006 .
[17] H. Rutishauser. Simultaneous iteration method for symmetric matrices , 1970 .