The Conditions for the Convergence of Power Scaled Matrices and Applications

For an invertible diagonal matrix D , the convergence of the power scaled matrix sequence N N D A  is investigated. As a special case, necessary and sufficient conditions are given for the convergence of NN D T  , where T is triangular. These conditions involve both the spectrum as well as the diagraph of the matrix T . The results are then used to privide a new proof for the convergence of subspace iteration.

[1]  Xuzhou Chen,et al.  ON THE CONVERGENCE OF POWER SCALED CESARO SUMS , 1997 .

[2]  Josef Stoer,et al.  Numerische Mathematik 1 , 1989 .

[3]  D. Sorensen Numerical methods for large eigenvalue problems , 2002, Acta Numerica.

[4]  G. Stewart Methods of Simultaneous Iteration for Calculating Eigenvectors of Matrices , 1975 .

[5]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[6]  Alston S. Householder,et al.  The Theory of Matrices in Numerical Analysis , 1964 .

[7]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[8]  William G. Poole,et al.  A geometric theory for the QR, LU and power iterations. , 1973 .

[9]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[10]  David S. Watkins,et al.  Some Perspectives on the Eigenvalue Problem , 1993, SIAM Rev..

[11]  David S. Watkins,et al.  Understanding the $QR$ Algorithm , 1982 .

[12]  Adi Ben-Israel A volume associated with m x n matrices , 1992 .

[13]  F. L. Bauer Das Verfahren der Treppeniteration und verwandte Verfahren zur Lösung algebraischer Eigenwertprobleme , 1957 .

[14]  Xuzhou Chen,et al.  The semi-iterative method applied to the hyper-power iteration , 2005, Numer. Linear Algebra Appl..

[15]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[16]  The Picard iteration and its application , 2006 .

[17]  H. Rutishauser Simultaneous iteration method for symmetric matrices , 1970 .