Single-Photon Distillation via a Photonic Parity Measurement Using Cavity QED.

Single photons with tailored temporal profiles are a vital resource for future quantum networks. Here we distill them out of custom-shaped laser pulses that reflect from a single atom strongly coupled to an optical resonator. A subsequent measurement on the atom is employed to herald a successful distillation. Out of vacuum-dominated light pulses, we create single photons with fidelity 66(1)%, two-and-more-photon suppression 95.5(6)%, and a Wigner function with negative value -0.125(6). Our scheme applied to state-of-the-art fiber resonators could boost the single-photon fidelity to up to 96%.

[1]  R. H. Brown,et al.  Correlation between Photons in two Coherent Beams of Light , 1956, Nature.

[2]  Hong,et al.  Experimental realization of a localized one-photon state. , 1986, Physical review letters.

[3]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[4]  M. Orrit,et al.  Triggered Source of Single Photons based on Controlled Single Molecule Fluorescence , 1999 .

[5]  Christian Kurtsiefer,et al.  Stable Solid-State Source of Single Photons , 2000 .

[6]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[7]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[8]  Axel Kuhn,et al.  Deterministic single-photon source for distributed quantum networking. , 2002, Physical review letters.

[9]  Axel Kuhn,et al.  Kuhn, Hennrich, and Rempe Reply to Comment on "Deterministic single-photon source for distributed quantum networking" , 2002 .

[10]  Herbert Walther,et al.  Continuous generation of single photons with controlled waveform in an ion-trap cavity system , 2004, Nature.

[11]  H J Kimble,et al.  Single-photon generation from stored excitation in an atomic ensemble. , 2004, Physical review letters.

[12]  H. Kimble,et al.  Scalable photonic quantum computation through cavity-assisted interactions. , 2004, Physical review letters.

[13]  L.-M. Duan,et al.  Engineering superpositions of coherent states in coherent optical pulses through cavity-assisted interaction , 2005 .

[14]  Alexey V. Gorshkov,et al.  Photon storage in Λ -type optically dense atomic media. I. Cavity model , 2006, quant-ph/0612082.

[15]  Alexey V. Gorshkov,et al.  Photon storage in Λ -type optically dense atomic media. II. Free-space model , 2007 .

[16]  J. O'Brien Optical Quantum Computing , 2007, Science.

[17]  Philippe Grangier,et al.  Generation of optical ‘Schrödinger cats’ from photon number states , 2007, Nature.

[18]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[19]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[20]  A. Lvovsky,et al.  Continuous-variable optical quantum-state tomography , 2009 .

[21]  Tilo Steinmetz,et al.  Cavity-based single atom preparation and high-fidelity hyperfine state readout. , 2010, Physical review letters.

[22]  Y. O. Dudin,et al.  Strongly Interacting Rydberg Excitations of a Cold Atomic Gas , 2012, Science.

[23]  Alexey V. Gorshkov,et al.  Quantum nonlinear optics with single photons enabled by strongly interacting atoms , 2012, Nature.

[24]  Bo Zhao,et al.  Efficient and long-lived quantum memory with cold atoms inside a ring cavity , 2012, Nature Physics.

[25]  Franco Nori,et al.  QuTiP: An open-source Python framework for the dynamics of open quantum systems , 2011, Comput. Phys. Commun..

[26]  Scott Aaronson,et al.  The Computational Complexity of Linear Optics , 2013, Theory Comput..

[27]  Andreas Reiserer,et al.  Nondestructive Detection of an Optical Photon , 2013, Science.

[28]  B. J. Metcalf,et al.  Boson Sampling on a Photonic Chip , 2012, Science.

[29]  G. Rempe,et al.  Generation of single photons from an atom-cavity system , 2013, 1302.2897.

[30]  P. Grangier,et al.  Homodyne tomography of a single photon retrieved on demand from a cavity-enhanced cold atom memory. , 2013, Physical review letters.

[31]  G. Rempe,et al.  Frequency splitting of polarization eigenmodes in microscopic Fabry–Perot cavities , 2014, 1408.4367.

[32]  Andreas Reiserer,et al.  Cavity-based quantum networks with single atoms and optical photons , 2014, 1412.2889.

[33]  P. Lodahl,et al.  Interfacing single photons and single quantum dots with photonic nanostructures , 2013, 1312.1079.

[34]  Bastian Hacker,et al.  A photon–photon quantum gate based on a single atom in an optical resonator , 2016, Nature.

[35]  Mazyar Mirrahimi,et al.  Extending the lifetime of a quantum bit with error correction in superconducting circuits , 2016, Nature.

[36]  K. N. Tolazzi,et al.  Two-Photon Blockade in an Atom-Driven Cavity QED System. , 2016, Physical review letters.

[37]  G. Rempe,et al.  A photon–photon quantum gate based on Rydberg interactions , 2018, Nature Physics.

[38]  G. Rempe,et al.  Deterministic creation of entangled atom–light Schrödinger-cat states , 2018, Nature Photonics.

[39]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.