In situ observations of aerosol properties above ice saturation in the polar tropopause region

In the polar winter tropopause region (T≅ 200 K, p = 200 hPa) over northern Europe, the occurrence of a haze-mode aerosol in the diameter range 0.75 μm 10 μm where found in regions with Swν > 0.57 (Sice ≥ 1.17). Hence, a range of Swν values existed between 0.5 and 0.57, where the haze mode was present outside of cirrus clouds. The ratio of number densities of haze-mode particles to Aitken-mode particles reached ∼1.25% inside and <0.3% outside of ice-supersaturated regions. In descending air parcels a continuous decrease in the number density of haze-mode particles was observed. This suggests a deliquescence transition in rising air parcels and evaporation of liquid haze droplets without recrystallization in sinking air parcels. Consideration of the possible chemical composition, phase, and growth timescales of the haze-mode particles leads to the conclusion that they are likely to contain ammoniated sulfates in the liquid phase. On the basis of measured particle sizes and calculated extinction values, the observed haze mode may be a candidate for subvisible cirrus cloud particles.

[1]  B. Strauss,et al.  On the Transition of Contrails into Cirrus Clouds , 2000 .

[2]  S. Solomon,et al.  On the composition and optical extinction of particles in the tropopause region , 1999 .

[3]  M. Molina,et al.  Phase transitions in aqueous NH4HSO4 solutions , 1999 .

[4]  Klaus Gierens,et al.  A distribution law for relative humidity in the upper troposphere and lower stratosphere derived from three years of MOZAIC measurements , 1999 .

[5]  T. Onasch,et al.  Infrared spectroscopic study of the deliquescence and efflorescence of ammonium sulfate aerosol as a function of temperature , 1999 .

[6]  S. Kreidenweis,et al.  Ice formation by black carbon particles , 1999 .

[7]  John H. Seinfeld,et al.  Global concentrations of tropospheric sulfate, nitrate, and ammonium aerosol simulated in a general circulation model , 1999 .

[8]  J. Abbatt,et al.  Deliquescence, efflorescence, and supercooling of ammonium sulfate aerosols at low temperature: Implications for cirrus cloud formation and aerosol phase in the atmosphere , 1999 .

[9]  J. Lelieveld,et al.  The temporal evolution of the ratio HNO3/NOy in the Arctic lower stratosphere from January to March 1997 , 1999 .

[10]  M. Molina,et al.  Phase transitions in emulsified HNO3/H2O and HNO3/H2SO4/H2O solutions , 1999 .

[11]  D. McKenna,et al.  Fast in situ stratospheric hygrometers: A new family of balloon‐borne and airborne Lyman α photofragment fluorescence hygrometers , 1999 .

[12]  M. Molina,et al.  A NEW OPTICAL TECHNIQUE TO STUDY AEROSOL PHASE TRANSITIONS : THE NUCLEATION OF ICE FROM H2SO4 AEROSOLS , 1998 .

[13]  A. Petzold,et al.  Elemental composition and morphology of ice-crystal residual particles in cirrus clouds and contrails , 1998 .

[14]  Particle composition of a young condensation trail and of upper tropospheric aerosol , 1998 .

[15]  A. Heymsfield,et al.  Small ice crystals in cirrus clouds : A model study and comparison with in situ observations , 1998 .

[16]  S. Kreidenweis,et al.  Single particle analyses of ice nucleating aerosols in the upper troposphere and lower stratosphere , 1998 .

[17]  O. Toon,et al.  The role of ammoniated aerosols in cirrus cloud nucleation , 1998 .

[18]  Andrew J. Heymsfield,et al.  Upper‐tropospheric relative humidity observations and implications for cirrus ice nucleation , 1998 .

[19]  S. Kreidenweis,et al.  The role of heterogeneous freezing nucleation in upper tropospheric clouds: Inferences from SUCCESS , 1998 .

[20]  Mathilde Douard,et al.  Lidar observation of spherical particles in a −65° cold cirrus observed above Sodankyla (Finland) during S.E.S.A.M.E. , 1998 .

[21]  U. Schumann,et al.  Near‐field measurements on contrail properties from fuels with different sulfur content , 1997 .

[22]  Larry W. Thomason,et al.  Heterogeneous chlorine chemistry in the tropopause region , 1997 .

[23]  S. Kreidenweis,et al.  The susceptibility of ice formation in upper tropospheric clouds to insoluble aerosol components , 1997 .

[24]  M. McCormick,et al.  A 6‐year climatology of cloud occurrence frequency from Stratospheric Aerosol and Gas Experiment II observations (1985–1990) , 1996 .

[25]  A. Heymsfield,et al.  Interactions of Radiation and Microphysics in Cirrus , 1996 .

[26]  P. Sheridan,et al.  Aerosol particles in the upper troposphere and lower stratosphere: Elemental composition and morphology of individual particles in northern midlatitudes , 1994 .

[27]  P. Crutzen,et al.  A three-dimensional model of the global ammonia cycle , 1994 .

[28]  D. Sonntag,et al.  Advancements in the field of hygrometry , 1994 .

[29]  G. S. Kent,et al.  A model for the separation of cloud and aerosol in SAGE II occultation data , 1993 .

[30]  A. Heymsfield,et al.  Cirrus crystal nucleation by homogeneous freezing of solution droplets , 1989 .

[31]  David R. Hanson,et al.  Laboratory studies of the nitric acid trihydrate: Implications for the south polar stratosphere , 1988 .

[32]  K. Sassen,et al.  Homogeneous Nucleation Rate for Highly Supercooled Cirrus Cloud Droplets , 1988 .

[33]  H. M. Steele,et al.  Effects of temperature and humidity on the growth and optical properties of sulphuric acid—water droplets in the stratosphere , 1981 .