Identifiability and retrievability of unique parameters describing intrinsic Andrews kinetics

Abstract A key factor contributing to the variability in the microbial kinetic parameters reported from batch assays is parameter identifiability, i.e., the ability of the mathematical routine used for parameter estimation to provide unique estimates of the individual parameter values. This work encompassed a three-part evaluation of the parameter identifiability of intrinsic kinetic parameters describing the Andrews growth model that are obtained from batch assays. First, a parameter identifiability analysis was conducted by visually inspecting the sensitivity equations for the Andrews growth model. Second, the practical retrievability of the parameters in the presence of experimental error was evaluated for the parameter estimation routine used. Third, the results of these analyses were tested using an example data set from the literature for a self-inhibitory substrate. The general trends from these analyses were consistent and indicated that it is very difficult, if not impossible, to simultaneously obtain a unique set of estimates of intrinsic kinetic parameters for the Andrews growth model using data from a single batch experiment.

[1]  C. Grady,et al.  Biodegradation kinetics of substituted phenolics: demonstration of a protocol based on electrolytic respirometry , 1990 .

[2]  A. F. Gaudy,et al.  Analysis of growth data with inhibitory carbon sources. , 1984, Biotechnology and bioengineering.

[3]  J. Mize Optimization Techniques With Fortran , 1973 .

[4]  Linfield Brown,et al.  Statistics for Environmental Engineers , 2002 .

[5]  J. A. Robinson,et al.  Determining microbial kinetic parameters using nonlinear regression analysis. Advantages and limitations in microbial ecology , 1985 .

[6]  Barth F. Smets,et al.  Respirometric technique for determination of extant kinetic parameters describing biodegradation , 1996 .

[7]  C. Posten,et al.  Inhibition kinetics of phenol degradation from unstable steady-state data. , 1997, Biotechnology and bioengineering.

[8]  V H Edwards,et al.  The influence of high substrate concentrations on microbial kinetics , 1970, Biotechnology and bioengineering.

[9]  J. Howell,et al.  Mixed culture biooxidation of phenol. I. Determination of kinetic parameters , 1973 .

[10]  A. F. Rozich,et al.  Response of phenol-acclimated activated sludge process to quantitative shock loading , 1985 .

[11]  J. A. Robinson,et al.  Nonlinear estimation of Monod growth kinetic parameters from a single substrate depletion curve , 1983, Applied and environmental microbiology.

[12]  A. Humphrey,et al.  Dynamic and steady state studies of phenol biodegradation in pure and mixed cultures , 1975, Biotechnology and bioengineering.

[13]  Campbell W. Robinson,et al.  Substrate inhibition kinetics: Phenol degradation by Pseudomonas putida , 1975 .

[14]  John F. Andrews,et al.  A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates , 1968 .

[15]  J H Luong,et al.  Generalization of monod kinetics for analysis of growth data with substrate inhibition , 1987, Biotechnology and bioengineering.

[16]  Barth F. Smets,et al.  Variability in kinetic parameter estimates: A review of possible causes and a proposed terminology , 1996 .

[17]  C. P. Leslie Grady,et al.  A technique for obtaining representative biokinetic parameter values from replicate sets of parameter estimates , 1998 .

[18]  Rodrigues,et al.  Phenol biodegradation by Pseudomonas putida DSM 548 in a batch reactor. , 2000, Biochemical engineering journal.

[19]  J. A. Robinson Modeling Microbial Processes: An Overview of Statistical Considerations , 1998 .

[20]  J. Monod The Growth of Bacterial Cultures , 1949 .