New exact solutions and conservation laws of a coupled Kadomtsev–Petviashvili system

Abstract This paper obtains exact solutions of a new coupled Kadomtsev–Petviashvili system, which arises in the analysis of various problems in fluid mechanics, theoretical physics and many scientific applications. Lie symmetry method along with the ( G ′ / G ) -expansion method is employed to find the travelling wave solutions of the underlying system. In addition, we derive the conservation laws of the coupled Kadomtsev–Petviashvili system using the multiplier method.

[1]  Mingliang Wang,et al.  The (G' G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics , 2008 .

[2]  A. Mikhailov,et al.  Extension of the module of invertible transformations. Classification of integrable systems , 1988 .

[3]  A. Sjöberg,et al.  On double reductions from symmetries and conservation laws , 2009 .

[4]  Ashfaque H. Bokhari,et al.  Generalization of the double reduction theory , 2009, 0909.4564.

[5]  Donglong Li,et al.  New exact solutions for the (2 + 1)-dimensional Sawada–Kotera equation , 2012 .

[6]  Abdul-Majid Wazwaz,et al.  Integrability of coupled KdV equations , 2011 .

[7]  Reza Abazari Application of G′G-expansion method to travelling wave solutions of three nonlinear evolution equation , 2010 .

[8]  Emmanuel Yomba,et al.  The modified extended Fan sub-equation method and its application to the (2+1)-dimensional Broer–Kaup–Kupershmidt equation , 2006 .

[9]  R. LeVeque Numerical methods for conservation laws , 1990 .

[10]  Mingliang Wang Exact solutions for a compound KdV-Burgers equation , 1996 .

[11]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[12]  P. Olver Applications of Lie Groups to Differential Equations , 1986 .

[13]  A. Wazwaz,et al.  Integrability of two coupled Kadomtsev–Petviashvili equations , 2011 .

[14]  D. Korteweg,et al.  XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves , 1895 .

[15]  G. Bluman,et al.  Symmetries and differential equations , 1989 .

[16]  Xianguo Geng,et al.  Darboux and Bäcklund transformations of the bidirectional Sawada-Kotera equation , 2012, Appl. Math. Comput..

[17]  R. Hirota Exact solution of the Korteweg-deVries equation for multiple collision of solitons , 1971 .

[18]  A. Sjöberg,et al.  Double reduction of PDEs from the association of symmetries with conservation laws with applications , 2007, Appl. Math. Comput..

[19]  Stephen C. Anco,et al.  Direct construction method for conservation laws of partial differential equations Part I: Examples of conservation law classifications , 2001, European Journal of Applied Mathematics.

[20]  Y. Kodama,et al.  Obstacles to Asymptotic Integrability , 1997 .

[21]  A. K. Head LIE, a PC program for Lie analysis of differential equations , 1993 .

[22]  Kezan Li,et al.  Exact traveling wave solutions for a generalized Hirota–Satsuma coupled KdV equation by Fan sub-equation method , 2011 .

[23]  G. Baumann,et al.  Symmetry Analysis of Differential Equations with Mathematica , 2000 .

[24]  A. K. Head,et al.  Dimsym and LIE: Symmetry determination packages , 1997 .

[25]  M. Tabor,et al.  The Painlevé property for partial differential equations , 1983 .

[26]  Deng-Shan Wang,et al.  Integrability of a coupled KdV system: Painlevé property, Lax pair and Bäcklund transformation , 2010, Appl. Math. Comput..

[27]  G. Bluman Potential Symmetries and Equivalent Conservation Laws , 1993 .