Ca2+-regulated-cAMP/PKA signaling in cardiac pacemaker cells links ATP supply to demand.

[1]  Mark E. Anderson,et al.  I(f) and SR Ca(2+) release both contribute to pacemaker activity in canine sinoatrial node cells. , 2010, Journal of molecular and cellular cardiology.

[2]  Edward G Lakatta,et al.  A coupled SYSTEM of intracellular Ca2+ clocks and surface membrane voltage clocks controls the timekeeping mechanism of the heart's pacemaker. , 2010, Circulation research.

[3]  E. Lakatta,et al.  Matching ATP supply and demand in mammalian heart , 2010, Annals of the New York Academy of Sciences.

[4]  E. Lakatta,et al.  Cholinergic receptor signaling modulates spontaneous firing of sinoatrial nodal cells via integrated effects on PKA-dependent Ca(2+) cycling and I(KACh). , 2009, American journal of physiology. Heart and circulatory physiology.

[5]  H. Tan,et al.  Effects of muscarinic receptor stimulation on Ca2+ transient, cAMP production and pacemaker frequency of rabbit sinoatrial node cells , 2009, Basic Research in Cardiology.

[6]  Raimond L Winslow,et al.  Control and regulation of mitochondrial energetics in an integrated model of cardiomyocyte function. , 2009, Biophysical journal.

[7]  R. Acín-Pérez,et al.  Cyclic AMP produced inside mitochondria regulates oxidative phosphorylation. , 2009, Cell metabolism.

[8]  K. Marcus,et al.  Phosphorylation and Kinetics of Mammalian Cytochrome c Oxidase* , 2008, Molecular & Cellular Proteomics.

[9]  B. O’Rourke,et al.  Enhancing Mitochondrial Ca2+ Uptake in Myocytes From Failing Hearts Restores Energy Supply and Demand Matching , 2008, Circulation research.

[10]  E. Lakatta,et al.  Ca2+-stimulated Basal Adenylyl Cyclase Activity Localization in Membrane Lipid Microdomains of Cardiac Sinoatrial Nodal Pacemaker Cells* , 2008, Journal of Biological Chemistry.

[11]  E. Lakatta,et al.  Constitutive Phosphodiesterase Activity Restricts Spontaneous Beating Rate of Cardiac Pacemaker Cells by Suppressing Local Ca2+ Releases , 2008, Circulation research.

[12]  J. Parrington,et al.  Ca2+‐stimulated adenylyl cyclase isoform AC1 is preferentially expressed in guinea‐pig sino‐atrial node cells and modulates the If pacemaker current , 2007, The Journal of physiology.

[13]  E. Lakatta,et al.  High Basal Protein Kinase A–Dependent Phosphorylation Drives Rhythmic Internal Ca2+ Store Oscillations and Spontaneous Beating of Cardiac Pacemaker Cells , 2006, Circulation research.

[14]  P. Clarke,et al.  Protein Kinase A Regulates Caspase-9 Activation by Apaf-1 Downstream of Cytochrome c* , 2005, Journal of Biological Chemistry.

[15]  E. Avvedimento,et al.  cAMP-PKA signaling to the mitochondria: protein scaffolds, mRNA and phosphatases. , 2005, Cellular signalling.

[16]  M. Vassalle,et al.  Obligatory role of diastolic voltage oscillations in sino-atrial node discharge. , 2003, Journal of molecular and cellular cardiology.

[17]  D. Allen,et al.  Early effects of metabolic inhibition on intracellular Ca2+ in toad pacemaker cells: involvement of Ca2+ stores. , 2003, American journal of physiology. Heart and circulatory physiology.

[18]  A. Signorile,et al.  Serine (threonine) phosphatase(s) acting on cAMP‐dependent phosphoproteins in mammalian mitochondria , 2002, FEBS letters.

[19]  E. Lakatta,et al.  Sinoatrial Nodal Cell Ryanodine Receptor and Na + -Ca 2+ Exchanger: Molecular Partners in Pacemaker Regulation , 2001, Circulation research.

[20]  H Honjo,et al.  The sinoatrial node, a heterogeneous pacemaker structure. , 2000, Cardiovascular research.

[21]  D. Allen,et al.  How does β‐adrenergic stimulation increase the heart rate? The role of intracellular Ca2+ release in amphibian pacemaker cells , 1999, The Journal of physiology.

[22]  S. Papa,et al.  cAMP‐dependent protein kinase and phosphoproteins in mammalian mitochondria. An extension of the cAMP‐mediated intracellular signal transduction , 1999, FEBS letters.

[23]  S. Papa,et al.  Topology of the mitochondrial cAMP‐dependent protein kinase and its substrates , 1996, FEBS letters.

[24]  S. Ghosh,et al.  Mitochondrial VDAC can be phosphorylated by cyclic AMP-dependent protein kinase. , 1995, Biochemical and biophysical research communications.

[25]  D. Harris,et al.  Control of mitochondrial ATP synthesis in the heart. , 1991, The Biochemical journal.

[26]  E. Lakatta,et al.  Measurement of mitochondrial free Ca2+ concentration in living single rat cardiac myocytes. , 1991, The American journal of physiology.

[27]  Dario DiFrancesco,et al.  Direct activation of cardiac pacemaker channels by intracellular cyclic AMP , 1991, Nature.

[28]  R S Balaban,et al.  Relation between phosphate metabolites and oxygen consumption of heart in vivo. , 1989, The American journal of physiology.

[29]  R S Balaban,et al.  Relation between work and phosphate metabolite in the in vivo paced mammalian heart. , 1986, Science.

[30]  H. Jongsma,et al.  Structure and function of the sino-atrial node: a review. , 1986, European heart journal.

[31]  J. Brachmann,et al.  Effect of glycolytic inhibitors on the sinoatrial node, atrium and atrioventricular node in the rabbit heart. , 1981, Journal of molecular and cellular cardiology.

[32]  A E Becker,et al.  Functional and Morphological Organization of the Rabbit Sinus Node , 1980, Circulation research.

[33]  M. Masson-Pévét,et al.  Sinus node and atrium cells from the rabbit heart: a quantitative electron microscopic description after electrophysiological localization. , 1979, Journal of molecular and cellular cardiology.