Biometric identi cation systems

In this paper, we provide an overview of the fundamentals of biometric identi cation, together with a description of the main biometric technologies currently in use, all of them within a common reference framework. A comparison on di8erent qualitative parameters of these technologies is also given, so that the reader may have a clear perspective of advantages and disadvantages of each. A section on multibiometrics describes the state of the art in making these systems work coordinately. Fusion at di8erent conceptual levels is described. Finally, a section on commercial issues provides the reader a perspective of the main companies currently involved in this eld. ? 2003 Elsevier B.V. All rights reserved.

[1]  Alice J. O'Toole,et al.  Assessing Algorithms as Computational Models for Human Face Recognition , 1999 .

[2]  James L. Wayman,et al.  Technical Testing and Evaluation of Biometric Identification Devices , 1996 .

[3]  Ramanarayanan Viswanathan,et al.  Optimal Decision Fusion in Multiple Sensor Systems , 1987, IEEE Transactions on Aerospace and Electronic Systems.

[4]  Rama Chellappa,et al.  Human and machine recognition of faces: a survey , 1995, Proc. IEEE.

[5]  Boualem Boashash,et al.  A human identification technique using images of the iris and wavelet transform , 1998, IEEE Trans. Signal Process..

[6]  Jiri Matas,et al.  Combining evidence in personal identity verification systems , 1997, Pattern Recognit. Lett..

[7]  John G. Daugman,et al.  Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression , 1988, IEEE Trans. Acoust. Speech Signal Process..

[8]  Stefan Fischer,et al.  Fusion of audio and video information for multi modal person authentication , 1997, Pattern Recognit. Lett..

[9]  John Daugman,et al.  Biometric decision landscapes , 2000 .

[10]  Sharath Pankanti,et al.  Evaluation techniques for biometrics-based authentication systems (FRR) , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[11]  V. S. Nalwa Automatic on-line signature verification , 1997 .

[12]  James L. Wayman,et al.  Fundamentals of Biometric Authentication Technologies , 2001, Int. J. Image Graph..

[13]  Pramod K. Varshney,et al.  Multisensor Data Fusion , 1997, IEA/AIE.

[14]  P. L. Venetianer,et al.  An Iris Biometric System for Public and Personal Use , 2000, Computer.

[15]  R. Khanna,et al.  Evaluation of automated biometrics-based identification and verification systems , 1997, Proc. IEEE.

[16]  John Daugman,et al.  How iris recognition works , 2002, IEEE Transactions on Circuits and Systems for Video Technology.

[17]  Robert Frischholz,et al.  BioID: A Multimodal Biometric Identification System , 2000, Computer.

[18]  Shaogang Gong,et al.  Audio- and Video-based Biometric Person Authentication , 1997, Lecture Notes in Computer Science.

[19]  Roberto Brunelli,et al.  Face Recognition: Features Versus Templates , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Sharath Pankanti,et al.  A Prototype Hand Geometry-based Verication System , 1999 .

[21]  Sharath Pankanti,et al.  Twin Test: On Discriminability of Fingerprints , 2001, AVBPA.

[22]  P. Verlinde,et al.  A multi-level data fusion approach for gradually upgrading theperformances of identity veri cation systems , 1999 .

[23]  Sharath Pankanti,et al.  Biometrics Systems: Anatomy of Performance , 2001 .

[24]  Sadaoki Furui,et al.  Recent advances in speaker recognition , 1997, Pattern Recognit. Lett..

[25]  Roberto Brunelli,et al.  Person identification using multiple cues , 1995, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  B. Miller,et al.  Vital signs of identity [biometrics] , 1994, IEEE Spectrum.

[27]  J. Daugman Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[28]  S. Liu,et al.  A practical guide to biometric security technology , 2001 .

[29]  Arun Ross,et al.  Information fusion in biometrics , 2003, Pattern Recognit. Lett..

[30]  James Llinas,et al.  Multisensor Data Fusion , 1990 .

[31]  Mingming Ma,et al.  Automatic on-line signature verification , 2001 .

[32]  Kuldip K. Paliwal,et al.  Information Fusion and Person Verification Using Speech & Face Information , 2002 .

[33]  Sharath Pankanti,et al.  An identity-authentication system using fingerprints , 1997, Proc. IEEE.

[34]  J. Daugman,et al.  Epigenetic randomness, complexity and singularity of human iris patterns , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[35]  Jonathan D. Stosz,et al.  Automated system for fingerprint authentication using pores and ridge structure , 1994, Optics & Photonics.

[36]  John Daugman,et al.  High Confidence Visual Recognition of Persons by a Test of Statistical Independence , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  E. Mayoraz,et al.  Fusion of face and speech data for person identity verification , 1999, IEEE Trans. Neural Networks.

[38]  P. Jonathon Phillips,et al.  Support Vector Machines Applied to Face Recognition , 1998, NIPS.

[39]  N. Ratha,et al.  Adaptive � ow orientation based feature extraction in ngerprint images � , 1995 .

[40]  Okhwan Byeon,et al.  Efficient Iris Recognition through Improvement of Feature Vector and Classifier , 2001 .

[41]  P. Jonathon Phillips,et al.  An Introduction to Evaluating Biometric Systems , 2000, Computer.

[42]  Samy Bengio,et al.  Evaluation of Biometric Technology on XM2VTS , 2001 .

[43]  M. Burge,et al.  Ear Biometrics , 1998 .

[44]  Jiri Matas,et al.  On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[45]  A. Churchill The Physiology of the Eye , 1949, The British journal of ophthalmology.

[46]  Gérard Chollet,et al.  Multilevel data fusion approach for gradually upgrading the performances of identity verification systems , 1999, Defense, Security, and Sensing.

[47]  Yasuhito Suenaga,et al.  Robust face identification scheme: KL expansion of an invariant feature space , 1992, Other Conferences.

[48]  P J. Phillips Support Vector Machines Applied to Face Recognition | NIST , 1998 .

[49]  Samy Bengio,et al.  A multi-sample multi-source model for biometric authentication , 2002, Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing.

[50]  Anil K. Jain,et al.  A Multichannel Approach to Ngerprint Classiication , 1999 .

[51]  Chin-Chuan Han,et al.  Personal authentication using palm-print features , 2003, Pattern Recognit..

[52]  T Poggio,et al.  Regularization Algorithms for Learning That Are Equivalent to Multilayer Networks , 1990, Science.

[53]  Hyeonjoon Moon,et al.  The FERET evaluation methodology for face-recognition algorithms , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[54]  Sharath Pankanti,et al.  Filterbank-based fingerprint matching , 2000, IEEE Trans. Image Process..