Parameter Sensitivity Analysis Applied to Modeling Transient Enhanced Diffusion and Activation of Boron in Silicon
暂无分享,去创建一个
[1] W. V. Loscutoff,et al. General sensitivity theory , 1972 .
[2] C. D. Thurmond,et al. Entropy of ionization and temperature variation of ionization levels of defects in semiconductors , 1976 .
[3] M. Eslami,et al. Introduction to System Sensitivity Theory , 1980, IEEE Transactions on Systems, Man, and Cybernetics.
[4] Van Vechten Ja. Activation enthalpy of recombination-enhanced vacancy migration in Si. , 1988 .
[5] B. J. Mulvaney,et al. The effect of concentration‐dependent defect recombination reactions on phosphorus diffusion in silicon , 1990 .
[6] P. Chi,et al. Transient enhanced diffusion without {311} defects in low energy B+‐implanted silicon , 1995 .
[7] David J Eaglesham. Dopants, defects and diffusion , 1995 .
[8] Martin Jaraiz,et al. Simulation of cluster evaporation and transient enhanced diffusion in silicon , 1996 .
[9] Zhu,et al. Ab initio pseudopotential calculations of B diffusion and pairing in Si. , 1996, Physical review. B, Condensed matter.
[10] T. E. Haynes,et al. Physical mechanisms of transient enhanced dopant diffusion in ion-implanted silicon , 1997 .
[11] J. Poate,et al. B diffusion and clustering in ion implanted Si: The role of B cluster precursors , 1997 .
[12] P. Clancy,et al. Tight-binding studies of the tendency for boron to cluster in c-Si. II. Interaction of dopants and defects in boron-doped Si , 1998 .
[13] M. D. Johnson,et al. THE FRACTION OF SUBSTITUTIONAL BORON IN SILICON DURING ION IMPLANTATION AND THERMAL ANNEALING , 1998 .
[14] Jing Zhu. Ab initio pseudopotential calculations of dopant diffusion in Si , 1998 .
[15] O. Sankey,et al. Theory of strain and electronic structure of Si 1-y C y and Si 1-x-y Ge x C y alloys , 1998 .
[16] Ohio State University,et al. THERMALLY ACTIVATED REORIENTATION OF DI-INTERSTITIAL DEFECTS IN SILICON , 1999 .
[17] W. Lerch,et al. Boron Ultrashallow Junction Formation in Silicon by Low‐Energy Implantation and Rapid Thermal Annealing in Inert and Oxidizing Ambient , 1999 .
[18] Hua Wu,et al. Parametric sensitivity in chemical systems , 1999 .
[19] P. Stolk,et al. ENERGETICS OF SELF-INTERSTITIAL CLUSTERS IN SI , 1999 .
[20] Scott T. Dunham,et al. First-Principles Study of Boron Diffusion in Silicon , 1999 .
[21] Atomistic Simulations of Damage Evolution in Silicon , 1999 .
[22] Daniel F. Downey,et al. Effects of “fast” rapid thermal anneals on sub-keV boron and BF2 ion implants , 1999 .
[23] F. Priolo,et al. Clustering of ultra-low-energy implanted boron in silicon during activation annealing , 2000 .
[24] Dopant dose loss at the Si–SiO2 interface , 2000 .
[25] Tao Wang,et al. Cluster formation during annealing of ultra-low-energy boron-implanted silicon , 2000 .
[26] M. Rosati,et al. Evolution of energetics and bonding of compact self-interstitial clusters in Si , 2000 .
[27] W. Windl,et al. Ab initio modeling of boron clustering in silicon , 2000 .
[28] Fumitaka Nishiyama,et al. Lattice site location of ultra-shallow implanted B in Si using ion beam analysis , 2001 .
[29] S. Chakravarthi,et al. A simple continuum model for boron clustering based on atomistic calculations , 2001 .