Parameter Sensitivity Analysis Applied to Modeling Transient Enhanced Diffusion and Activation of Boron in Silicon

Transient enhanced diffusion (TED) during annealing of implanted boron in silicon greatly impedes the formation of junctions that are sufficiently shallow for advanced complementary metal oxide semiconductor devices. For reasons of cost and efficiency in process development, detailed modeling of TED is often used for designing annealing procedures. However, because model validation depends primarily on fitting experimental dopant profiles, and because realistic models contain dozens of parameters that are poorly known, development of a unique set of rate parameters with true predictive capability has proven elusive. Here we have employed formal parameter sensitivity analysis by the finite difference method to show that the activation energies most critical to know accurately are those for interstitial boron diffusion, kick-in, and dissociation of the (B s - Si i ) + complex to liberate either interstitial B (kick-out) or Si. Maximum likelihood estimation is also applied to the literature for interstitial cluster formation to determine a most likely set of activation energies for cluster dissociation.

[1]  W. V. Loscutoff,et al.  General sensitivity theory , 1972 .

[2]  C. D. Thurmond,et al.  Entropy of ionization and temperature variation of ionization levels of defects in semiconductors , 1976 .

[3]  M. Eslami,et al.  Introduction to System Sensitivity Theory , 1980, IEEE Transactions on Systems, Man, and Cybernetics.

[4]  Van Vechten Ja Activation enthalpy of recombination-enhanced vacancy migration in Si. , 1988 .

[5]  B. J. Mulvaney,et al.  The effect of concentration‐dependent defect recombination reactions on phosphorus diffusion in silicon , 1990 .

[6]  P. Chi,et al.  Transient enhanced diffusion without {311} defects in low energy B+‐implanted silicon , 1995 .

[7]  David J Eaglesham Dopants, defects and diffusion , 1995 .

[8]  Martin Jaraiz,et al.  Simulation of cluster evaporation and transient enhanced diffusion in silicon , 1996 .

[9]  Zhu,et al.  Ab initio pseudopotential calculations of B diffusion and pairing in Si. , 1996, Physical review. B, Condensed matter.

[10]  T. E. Haynes,et al.  Physical mechanisms of transient enhanced dopant diffusion in ion-implanted silicon , 1997 .

[11]  J. Poate,et al.  B diffusion and clustering in ion implanted Si: The role of B cluster precursors , 1997 .

[12]  P. Clancy,et al.  Tight-binding studies of the tendency for boron to cluster in c-Si. II. Interaction of dopants and defects in boron-doped Si , 1998 .

[13]  M. D. Johnson,et al.  THE FRACTION OF SUBSTITUTIONAL BORON IN SILICON DURING ION IMPLANTATION AND THERMAL ANNEALING , 1998 .

[14]  Jing Zhu Ab initio pseudopotential calculations of dopant diffusion in Si , 1998 .

[15]  O. Sankey,et al.  Theory of strain and electronic structure of Si 1-y C y and Si 1-x-y Ge x C y alloys , 1998 .

[16]  Ohio State University,et al.  THERMALLY ACTIVATED REORIENTATION OF DI-INTERSTITIAL DEFECTS IN SILICON , 1999 .

[17]  W. Lerch,et al.  Boron Ultrashallow Junction Formation in Silicon by Low‐Energy Implantation and Rapid Thermal Annealing in Inert and Oxidizing Ambient , 1999 .

[18]  Hua Wu,et al.  Parametric sensitivity in chemical systems , 1999 .

[19]  P. Stolk,et al.  ENERGETICS OF SELF-INTERSTITIAL CLUSTERS IN SI , 1999 .

[20]  Scott T. Dunham,et al.  First-Principles Study of Boron Diffusion in Silicon , 1999 .

[21]  Atomistic Simulations of Damage Evolution in Silicon , 1999 .

[22]  Daniel F. Downey,et al.  Effects of “fast” rapid thermal anneals on sub-keV boron and BF2 ion implants , 1999 .

[23]  F. Priolo,et al.  Clustering of ultra-low-energy implanted boron in silicon during activation annealing , 2000 .

[24]  Dopant dose loss at the Si–SiO2 interface , 2000 .

[25]  Tao Wang,et al.  Cluster formation during annealing of ultra-low-energy boron-implanted silicon , 2000 .

[26]  M. Rosati,et al.  Evolution of energetics and bonding of compact self-interstitial clusters in Si , 2000 .

[27]  W. Windl,et al.  Ab initio modeling of boron clustering in silicon , 2000 .

[28]  Fumitaka Nishiyama,et al.  Lattice site location of ultra-shallow implanted B in Si using ion beam analysis , 2001 .

[29]  S. Chakravarthi,et al.  A simple continuum model for boron clustering based on atomistic calculations , 2001 .