Relative Amino Acid Concentrations as a Signature for Parent Body Processes of Carbonaceous Chondrites
暂无分享,去创建一个
Gerhard Kminek | Jeffrey L. Bada | Oliver Botta | Daniel P. Glavin | J. Bada | D. Glavin | G. Kminek | O. Botta
[1] S. Pizzarello,et al. Non-racemic amino acids in the Murray and Murchison meteorites. , 2000, Geochimica et cosmochimica acta.
[2] A. Bischoff,et al. Carbonates in CI chondrites: clues to parent body evolution. , 1996, Geochimica et cosmochimica acta.
[3] E. Anders,et al. Chemical Evolution of the Carbonaceous Chondrites , 1962 .
[4] P. E. Hare,et al. Organic Analysis of the Antarctic Carbonaceous Chondrites , 1981 .
[5] A. Rubin,et al. THE COMPOSITIONAL CLASSIFICATION OF CHONDRITES. VI: THE CR CARBONACEOUS CHONDRITE GROUP , 1994 .
[6] H. Campins,et al. Expected characteristics of cometary meteorites , 1997 .
[7] S. Pizzarello,et al. Amino Acids in an Antarctic Carbonaceous Chondrite , 1979, Science.
[8] P. Cassen,et al. Astronomical constraints on nebular temperatures: Implications for planetesimal formation , 1999 .
[9] R. Clayton,et al. The oxygen isotope record in Murchison and other carbonaceous chondrites , 1984 .
[10] Carl Sagan,et al. Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life , 1992, Nature.
[11] J L Bada,et al. Prebiotic synthesis of adenine and amino acids under Europa-like conditions. , 2000, Icarus.
[12] A. Rubin,et al. The compositional classification of chondrites: VII. The R chondrite group , 1996 .
[13] S. Pizzarello,et al. Enantiomeric Excesses in Meteoritic Amino Acids , 1997, Science.
[14] M. Zolensky,et al. Evidence of Thermal Metamorphism on the C, G, B, and F Asteroids , 1993, Science.
[15] T. Burbine. Could G‐class asteroids be the parent bodies of the CM chondrites? , 1998 .
[16] E. Cloutis,et al. Near-Infrared Spectroscopy of Primitive Solar System Objects , 1994 .
[17] William K. Hartmann,et al. The relationship of active comets, 'extinct' comets, and dark asteroids , 1987 .
[18] S. Pizzarello,et al. Alanine enantiomers in the Murchison meteorite , 1998, Nature.
[19] Ronald A. Nieman,et al. The Organic Content of the Tagish Lake Meteorite , 2001, Science.
[20] J L Bada,et al. The chemical conditions on the parent body of the Murchison meteorite: some conclusions based on amino, hydroxy and dicarboxylic acids. , 1984, Advances in space research : the official journal of the Committee on Space Research.
[21] D P Glavin,et al. Amino acids in the Martian meteorite Nakhla. , 1999, Proceedings of the National Academy of Sciences of the United States of America.
[22] H. McSween. Are carbonaceous chondrites primitive or processed? A review , 1979 .
[23] S. Macko,et al. Isotopic evidence for extraterrestrial non- racemic amino acids in the Murchison meteorite , 1997, Nature.
[24] Pascale Ehrenfreund,et al. A voyage from dark clouds to the early Earth , 2000 .
[25] A. Brack,et al. Were micrometeorites a source of prebiotic molecules on the early Earth? , 1995, Advances in space research : the official journal of the Committee on Space Research.
[26] Michael E. Zolensky,et al. The Tagish Lake Meteorite: A Possible Sample from a D-Type Asteroid , 2001, Science.
[27] M. Levy,et al. Peptide nucleic acids rather than RNA may have been the first genetic molecule. , 2000, Proceedings of the National Academy of Sciences of the United States of America.
[28] J. Bada,et al. Extraterrestrial Organic Compounds in Meteorites , 2002 .
[29] F. Herbert,et al. Primordial metamorphism of asteroids via electrical induction in A T Tauri-like solar wind , 1978 .
[30] A. Markwick. Astrochemistry: from Molecular Clouds to Planetary Systems , 2005 .
[31] Gerhard Kminek,et al. Amino acids in the Tagish Lake meteorite , 2002 .
[32] Keizo Yanai,et al. AMINO ACIDS FROM THE YAMATO-791198 CARBONACEOUS CHONDRITE FROM ANTARCTICA , 1985 .
[33] C. Moore,et al. Amino Acid Analyses of the Murchison, Murray, and Allende Carbonaceous Chondrites , 1971, Science.
[34] M. Zolensky,et al. Thermal metamorphism of the C, G, B, and F asteroids seen from the 0.7 μm, 3 μm, and UV absorption strengths in comparison with carbonaceous chondrites , 1996 .
[35] L. Leshin,et al. The oxygen isotopic composition of olivine and pyroxene from CI chondrites , 1997 .
[36] Katharina Lodders,et al. Perspectives on the Comet-Asteroid-Meteorite Link , 1999 .
[37] E. Anders,et al. Pre-biotic organic matter from comets and asteroids , 1989, Nature.
[38] M Smith,et al. Near infrared spectroscopy. , 1999, British journal of anaesthesia.
[39] E. Dishoeck,et al. Astrochemistry: From Molecular Clouds to Planetary Systems , 2000 .
[40] Sherwood Chang,et al. Organic matter in meteorites: molecular and isotopic analyses of the Murchison meteorite. , 1993 .
[41] D P Glavin,et al. Extraterrestrial amino acids in Orgueil and Ivuna: Tracing the parent body of CI type carbonaceous chondrites , 2001, Proceedings of the National Academy of Sciences of the United States of America.