Surface coatings of two-dimensional metal-organic framework nanosheets enable stable zinc anodes

[1]  Yijing Wang,et al.  Dual Porous 3D Zinc Anodes toward Dendrite-Free and Long Cycle Life Zinc-Ion Batteries. , 2021, ACS applied materials & interfaces.

[2]  Seyed Milad Hosseini,et al.  A Thin and Uniform Fluoride-Based Artificial Interphase for the Zinc Metal Anode Enabling Reversible Zn/MnO2 Batteries , 2021, ACS Energy Letters.

[3]  Xianwen Wu,et al.  A hafnium oxide-coated dendrite-free zinc anode for rechargeable aqueous zinc-ion batteries. , 2021, Journal of colloid and interface science.

[4]  Yonggang Wang,et al.  Towards High Performance Zn-based Hybrid Supercapacitor via Macropores-based Charge Storage in Organic Electrolyte. , 2021, Angewandte Chemie.

[5]  C. Zhi,et al.  Dendrites in Zn‐Based Batteries , 2020, Advanced materials.

[6]  Zhiqiang Niu,et al.  Direct Self-Assembly of MXene on Zn Anodes for Dendrite-Free Aqueous Zinc-Ion Batteries. , 2020, Angewandte Chemie.

[7]  Yinxiang Zeng,et al.  Zeolitic Imidazolate Frameworks as Zn2+ Modulation Layers to Enable Dendrite‐Free Zn Anodes , 2020, Advanced science.

[8]  F. Kang,et al.  High-Performance Aqueous Zinc-Ion Batteries Realized by MOF Materials , 2020, Nano-Micro Letters.

[9]  Ji Young Kim,et al.  Functionalized Zn@ZnO Hexagonal Pyramid Array for Dendrite‐Free and Ultrastable Zinc Metal Anodes , 2020, Advanced Functional Materials.

[10]  T. Deng,et al.  Hydrophobic organic electrolyte protected Zn anodes for aqueous Zn batteries. , 2020, Angewandte Chemie.

[11]  W. Choi,et al.  Stable and High-energy-density Zn ion Rechargeable Batteries based on MoS2 coated Zn anode. , 2020, ACS applied materials & interfaces.

[12]  Yongming Sun,et al.  Chemically resistant Cu–Zn/Zn composite anode for long cycling aqueous batteries , 2020 .

[13]  Dipan Kundu,et al.  Scientific Challenges for the Implementation of Zn-Ion Batteries , 2020 .

[14]  Xiaowei Mu,et al.  Constructing a supersaturated electrolyte front surface for stable rechargeable aqueous zinc batteries. , 2020, Angewandte Chemie.

[15]  R. Ruoff,et al.  Metal‐Organic Framework Integrated Anodes for Aqueous Zinc‐Ion Batteries , 2020, Advanced Energy Materials.

[16]  Jiujun Zhang,et al.  Highly Reversible Zn Anode Enabled by Controllable Formation of Nucleation Sites for Zn‐Based Batteries , 2020, Advanced Functional Materials.

[17]  Jiang Zhou,et al.  Issues and Future Perspective on Zinc Metal Anode for Rechargeable Aqueous Zinc‐ion Batteries , 2020, ENERGY & ENVIRONMENTAL MATERIALS.

[18]  Guo-Ying Zhang,et al.  High-efficient Aerobic Oxidation of Biomass-derived 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid over Holey 2D Mn2O3 Nanoflakes from a Mn-based MOF. , 2019, ChemSusChem.

[19]  L. Archer,et al.  Reversible epitaxial electrodeposition of metals in battery anodes , 2019, Science.

[20]  David M. Reed,et al.  Electrolyte Effect on the Electrochemical Performance of Mild Aqueous Zinc-Electrolytic Manganese Dioxide Batteries. , 2019, ACS applied materials & interfaces.

[21]  Luyi Yang,et al.  Artificial Solid-Electrolyte Interface Facilitating Dendrite-Free Zinc Metal Anodes via Nano-Wetting Effect. , 2019, ACS applied materials & interfaces.

[22]  Chunhua Han,et al.  A Novel Dendrite‐Free Mn2+/Zn2+ Hybrid Battery with 2.3 V Voltage Window and 11000‐Cycle Lifespan , 2019, Advanced Energy Materials.

[23]  Yongyao Xia,et al.  A Metal-Organic Framework Host for Highly Reversible Dendrite-free Zinc Metal Anodes , 2019, Joule.

[24]  Bingbing Chen,et al.  “Water-in-deep eutectic solvent” electrolytes enable zinc metal anodes for rechargeable aqueous batteries , 2019, Nano Energy.

[25]  Jiajie Liu,et al.  A MOF-based single-ion Zn2+ solid electrolyte leading to dendrite-free rechargeable Zn batteries , 2019, Nano Energy.

[26]  F. Kang,et al.  3D Porous Copper Skeleton Supported Zinc Anode toward High Capacity and Long Cycle Life Zinc Ion Batteries , 2019, ACS Sustainable Chemistry & Engineering.

[27]  Jiang Zhou,et al.  Recent Advances in Aqueous Zinc-Ion Batteries , 2018, ACS Energy Letters.

[28]  Christina T. Lollar,et al.  Stable Metal–Organic Frameworks: Design, Synthesis, and Applications , 2018, Advanced materials.

[29]  L. Mai,et al.  Ultrathin Surface Coating Enables Stabilized Zinc Metal Anode , 2018, Advanced Materials Interfaces.

[30]  Kangli Wang,et al.  Advanced Low-Cost, High-Voltage, Long-Life Aqueous Hybrid Sodium/Zinc Batteries Enabled by a Dendrite-Free Zinc Anode and Concentrated Electrolyte. , 2018, ACS applied materials & interfaces.

[31]  Fei Wang,et al.  Highly reversible zinc metal anode for aqueous batteries , 2018, Nature Materials.

[32]  Tao Gao,et al.  Zn/MnO2 Battery Chemistry With H+ and Zn2+ Coinsertion. , 2017, Journal of the American Chemical Society.

[33]  Ruihan Dai,et al.  Electron Crystallography Reveals Atomic Structures of Metal-Organic Nanoplates with M12(μ3-O)8(μ3-OH)8(μ2-OH)6 (M = Zr, Hf) Secondary Building Units. , 2017, Inorganic chemistry.

[34]  Joseph F. Parker,et al.  Rechargeable nickel–3D zinc batteries: An energy-dense, safer alternative to lithium-ion , 2017, Science.

[35]  Peyman Z. Moghadam,et al.  Metal–Organic Nanosheets Formed via Defect-Mediated Transformation of a Hafnium Metal–Organic Framework , 2017, Journal of the American Chemical Society.

[36]  Feiyu Kang,et al.  Energetic zinc ion chemistry: the rechargeable zinc ion battery. , 2012, Angewandte Chemie.

[37]  Carlo Lamberti,et al.  A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. , 2008, Journal of the American Chemical Society.

[38]  Feiyu Kang,et al.  Enhancement on Cycle Performance of Zn Anodes by Activated Carbon Modification for Neutral Rechargeable Zinc Ion Batteries , 2015 .