SPLIT-PIN software enabling confocal and super-resolution imaging with a virtually closed pinhole

[1]  A. Diaspro,et al.  Alterations induced by the PML-RARα oncogene revealed by Image Cross-Correlation Spectroscopy. , 2022, Biophysical journal.

[2]  D. Condorelli,et al.  A phasor‐based approach to improve optical sectioning in any confocal microscope with a tunable pinhole , 2022, Microscopy research and technique.

[3]  A. Diaspro,et al.  Evaluation of sted super-resolution image quality by image correlation spectroscopy (QuICS) , 2021, Scientific Reports.

[4]  A. Diaspro,et al.  Chromatin investigation in the nucleus using a phasor approach to structured illumination microscopy , 2021, Biophysical journal.

[5]  Alberto Diaspro,et al.  Measuring Nanoscale Distances by Structured Illumination Microscopy and Image Cross-Correlation Spectroscopy (SIM-ICCS) , 2021, Sensors.

[6]  H. Clevers,et al.  Homeostatic mini-intestines through scaffold-guided organoid morphogenesis , 2020, Nature.

[7]  A. Diaspro,et al.  Optical nanoscopy , 2020, La Rivista del Nuovo Cimento.

[8]  A. Diaspro,et al.  Improving SPLIT-STED super-resolution imaging with tunable depletion and excitation power , 2020, Journal of Physics D: Applied Physics.

[9]  Daniel E. S. Koo,et al.  Pre-processing visualization of hyperspectral fluorescent data with Spectrally Encoded Enhanced Representations , 2020, Nature Communications.

[10]  A. Silahtaroglu,et al.  The Interchromatin Compartment Participates in the Structural and Functional Organization of the Cell Nucleus , 2020, BioEssays : news and reviews in molecular, cellular and developmental biology.

[11]  A. Diaspro,et al.  Chromatin nanoscale compaction in live cells visualized by acceptor‐to‐donor ratio corrected Förster resonance energy transfer between DNA dyes , 2019, bioRxiv.

[12]  Jörg Enderlein,et al.  Image scanning microscopy. , 2019, Current opinion in chemical biology.

[13]  T. Ha,et al.  Fight against background noise in stimulated emission depletion nanoscopy , 2019, Physical biology.

[14]  A. Diaspro,et al.  Measuring Mobility in Chromatin by Intensity-Sorted FCS , 2019, Biophysical journal.

[15]  Alberto Diaspro,et al.  Photon-separation to enhance the spatial resolution of pulsed STED microscopy. , 2019, Nanoscale.

[16]  Alberto Diaspro,et al.  A robust and versatile platform for image scanning microscopy enabling super-resolution FLIM , 2019, Nature Methods.

[17]  Christopher A. R. Jones,et al.  Application of Spectral Phasor analysis to sodium microenvironments in myoblast progenitor cells , 2018, PloS one.

[18]  A. Diaspro,et al.  Exploiting the tunability of stimulated emission depletion microscopy for super-resolution imaging of nuclear structures , 2018, Nature Communications.

[19]  Alberto Diaspro,et al.  STED super-resolved microscopy , 2018, Nature Methods.

[20]  A. Diaspro,et al.  Local raster image correlation spectroscopy generates high-resolution intracellular diffusion maps , 2018, Communications Biology.

[21]  B. Lagerholm,et al.  Exploring the potential of Airyscan microscopy for live cells imaging , 2017 .

[22]  A. Diaspro,et al.  Measurement of nanoscale three-dimensional diffusion in the interior of living cells by STED-FCS , 2017, Nature Communications.

[23]  G. Ulrich Nienhaus,et al.  Background suppression in fluorescence nanoscopy with stimulated emission double depletion , 2017, Nature Photonics.

[24]  Enrico Gratton,et al.  Spectral phasor analysis of LAURDAN fluorescence in live A549 lung cells to study the hydration and time evolution of intracellular lamellar body-like structures. , 2016, Biochimica et biophysica acta.

[25]  Alberto Diaspro,et al.  Phasor Analysis of Local ICS Detects Heterogeneity in Size and Number of Intracellular Vesicles , 2016, Biophysical journal.

[26]  R. Dickinson,et al.  Moving Cell Boundaries Drive Nuclear Shaping during Cell Spreading. , 2015, Biophysical journal.

[27]  Guillaume Charras,et al.  Dissecting protein reaction dynamics in living cells by fluorescence recovery after photobleaching , 2015, Nature Protocols.

[28]  Alberto Diaspro,et al.  Encoding and decoding spatio-temporal information for super-resolution microscopy , 2015, Nature Communications.

[29]  A. J. Phillips,et al.  Optimising performance of a confocal fluorescence microscope with a differential pinhole , 2015 .

[30]  Alberto Diaspro,et al.  A new filtering technique for removing anti‐Stokes emission background in gated CW‐STED microscopy , 2014, Journal of biophotonics.

[31]  Richard N Day,et al.  Measuring protein interactions using Förster resonance energy transfer and fluorescence lifetime imaging microscopy. , 2014, Methods.

[32]  C. Kuang,et al.  Image subtraction method for improving lateral resolution and SNR in confocal microscopy , 2013 .

[33]  Benjamin Rappaz,et al.  Fluorescence resonance energy transfer microscopy as demonstrated by measuring the activation of the serine/threonine kinase Akt , 2013, Nature Protocols.

[34]  Enrico Gratton,et al.  NHE3 Regulatory Factor 1 (NHERF1) Modulates Intestinal Sodium-dependent Phosphate Transporter (NaPi-2b) Expression in Apical Microvilli* , 2012, The Journal of Biological Chemistry.

[35]  Hans C Gerritsen,et al.  Spectral phasor analysis allows rapid and reliable unmixing of fluorescence microscopy spectral images. , 2012, Optics express.

[36]  Hans Clevers,et al.  Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. , 2011, Gastroenterology.

[37]  Christian Eggeling,et al.  Exploring single-molecule dynamics with fluorescence nanoscopy , 2009 .

[38]  Hisashi Okugawa,et al.  A new imaging method for confocal microscopy , 2008, SPIE BiOS.

[39]  M Martínez-Corral,et al.  Optical sectioning by two-pinhole confocal fluorescence microscopy. , 2003, Micron.

[40]  Vassilios Sarafis,et al.  Resolution enhancement by subtraction of confocal signals taken at different pinhole sizes. , 2003, Micron.