Autophagy and mitophagy interplay in melanoma progression.

[1]  P. Agostinis,et al.  New functions of mitochondria associated membranes in cellular signaling. , 2014, Biochimica et biophysica acta.

[2]  L. Brace,et al.  Defective Mitophagy in XPA via PARP-1 Hyperactivation and NAD+/SIRT1 Reduction , 2014, Cell.

[3]  D. Zaharie,et al.  Mitochondrial impairment observed in fibroblasts from South African Parkinson's disease patients with parkin mutations. , 2014, Biochemical and biophysical research communications.

[4]  Longxuan Li,et al.  ULK1 translocates to mitochondria and phosphorylates FUNDC1 to regulate mitophagy , 2014, EMBO reports.

[5]  S. Campello,et al.  Mitochondrial dismissal in mammals, from protein degradation to mitophagy. , 2014, Biochimica et biophysica acta.

[6]  Randy F. Stout,et al.  Connexins modulate autophagosome biogenesis , 2014, Nature Cell Biology.

[7]  M. Herlyn,et al.  Targeting ER stress-induced autophagy overcomes BRAF inhibitor resistance in melanoma. , 2014, The Journal of clinical investigation.

[8]  P. Vandenabeele,et al.  BNIP3 supports melanoma cell migration and vasculogenic mimicry by orchestrating the actin cytoskeleton , 2014, Cell Death and Disease.

[9]  Wenxian Wu,et al.  MicroRNA-137 Is a Novel Hypoxia-responsive MicroRNA That Inhibits Mitophagy via Regulation of Two Mitophagy Receptors FUNDC1 and NIX* , 2014, The Journal of Biological Chemistry.

[10]  H. Simon,et al.  Autophagy suppresses melanoma tumorigenesis by inducing senescence , 2014, Autophagy.

[11]  A. M. van der Bliek,et al.  Mitochondrial Rab GAPs govern autophagosome biogenesis during mitophagy , 2014, eLife.

[12]  B. Westermann,et al.  Mitochondrial ER contacts are crucial for mitophagy in yeast. , 2014, Developmental cell.

[13]  P. Agostinis,et al.  Dynamic interplay between autophagic flux and Akt during melanoma progression in vitro , 2014, Experimental dermatology.

[14]  V. Dötsch,et al.  Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. , 2014, Molecular cell.

[15]  Eric H. Baehrecke,et al.  Self-consumption: the interplay of autophagy and apoptosis , 2014, Nature Reviews Molecular Cell Biology.

[16]  N. Hattori,et al.  Mutations in Fis1 disrupt orderly disposal of defective mitochondria , 2014, Molecular biology of the cell.

[17]  Amy Y. M. Au,et al.  p53 status determines the role of autophagy in pancreatic tumour development , 2013, Nature.

[18]  Scott E. Martin,et al.  High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy , 2013, Nature.

[19]  Keiji Tanaka,et al.  A Dimeric PINK1-containing Complex on Depolarized Mitochondria Stimulates Parkin Recruitment* , 2013, The Journal of Biological Chemistry.

[20]  J. James,et al.  Loss of iron triggers PINK1/Parkin-independent mitophagy , 2013, EMBO reports.

[21]  E. White,et al.  Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E-driven lung tumors. , 2013, Cancer discovery.

[22]  M. Dewhirst,et al.  Tumor cells upregulate normoxic HIF-1α in response to doxorubicin. , 2013, Cancer research.

[23]  G. Fimia,et al.  Why is autophagy important for melanoma? Molecular mechanisms and therapeutic implications. , 2013, Seminars in cancer biology.

[24]  H. Simon,et al.  Down-Regulation of Autophagy-Related Protein 5 (ATG5) Contributes to the Pathogenesis of Early-Stage Cutaneous Melanoma , 2013, Science Translational Medicine.

[25]  R. Youle,et al.  The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/Parkin-mediated mitophagy of polarized mitochondria , 2013, Autophagy.

[26]  T. Saigusa,et al.  Casein kinase 2 is essential for mitophagy , 2013, EMBO reports.

[27]  T. Horino,et al.  Sestrin-2 and BNIP3 regulate autophagy and mitophagy in renal tubular cells in acute kidney injury. , 2013, American journal of physiology. Renal physiology.

[28]  Xueyuan Bai,et al.  Mitochondrial Autophagy Involving Renal Injury and Aging Is Modulated by Caloric Intake in Aged Rat Kidneys , 2013, PloS one.

[29]  D. Klionsky,et al.  The scaffold protein Atg11 recruits fission machinery to drive selective mitochondria degradation by autophagy. , 2013, Developmental cell.

[30]  P. Agostinis,et al.  Autophagy: shaping the tumor microenvironment and therapeutic response. , 2013, Trends in molecular medicine.

[31]  D. Rubinsztein,et al.  Biology and trafficking of ATG9 and ATG16L1, two proteins that regulate autophagosome formation , 2013, FEBS letters.

[32]  D. Klionsky,et al.  The Mechanism and Physiological Function of Macroautophagy , 2013, Journal of Innate Immunity.

[33]  H. Krämer Route to destruction: Autophagosomes SNARE lysosomes , 2013, The Journal of cell biology.

[34]  M. Priault,et al.  Rheb regulates mitophagy induced by mitochondrial energetic status. , 2013, Cell metabolism.

[35]  J. Kong,et al.  Induction of Neuronal Mitophagy in Acute Spinal Cord Injury in Rats , 2013, Neurotoxicity Research.

[36]  G. Dorn,et al.  PINK1-Phosphorylated Mitofusin 2 Is a Parkin Receptor for Culling Damaged Mitochondria , 2013, Science.

[37]  Ray Marcel Marin-Florez,et al.  A KRAB/KAP1-miRNA Cascade Regulates Erythropoiesis Through Stage-Specific Control of Mitophagy , 2013, Science.

[38]  R. Youle,et al.  PINK1 is degraded through the N-end rule pathway , 2013, Autophagy.

[39]  I. Nabi,et al.  Regulation of mitophagy by the Gp78 E3 ubiquitin ligase , 2013, Molecular biology of the cell.

[40]  H. Harn,et al.  Parkinson's Disease: From Genetics to Treatments , 2013, Cell transplantation.

[41]  P. Puigserver,et al.  PGC1α expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress. , 2013, Cancer cell.

[42]  Gennifer E. Merrihew,et al.  The PINK1–Parkin pathway promotes both mitophagy and selective respiratory chain turnover in vivo , 2013, Proceedings of the National Academy of Sciences.

[43]  Jun S. Song,et al.  Oncogenic BRAF regulates oxidative metabolism via PGC1α and MITF. , 2013, Cancer cell.

[44]  Yasushi Hiraoka,et al.  Autophagosomes form at ER–mitochondria contact sites , 2013, Nature.

[45]  E. White,et al.  Coordinate Autophagy and mTOR Pathway Inhibition Enhances Cell Death in Melanoma , 2013, PloS one.

[46]  Maki Maeda,et al.  Fis1 acts as a mitochondrial recruitment factor for TBC1D15 that is involved in regulation of mitochondrial morphology , 2013, Journal of Cell Science.

[47]  R. Eils,et al.  Modulation of Serines 17 and 24 in the LC3-interacting Region of Bnip3 Determines Pro-survival Mitophagy versus Apoptosis* , 2012, The Journal of Biological Chemistry.

[48]  Keiji Tanaka,et al.  Mitochondrial hexokinase HKI is a novel substrate of the Parkin ubiquitin ligase. , 2012, Biochemical and biophysical research communications.

[49]  M. Soengas Mitophagy or how to control the Jekyll and Hyde embedded in mitochondrial metabolism: implications for melanoma progression and drug resistance , 2012, Pigment cell & melanoma research.

[50]  D. Rubinsztein,et al.  Autophagy modulation as a potential therapeutic target for diverse diseases , 2012, Nature Reviews Drug Discovery.

[51]  E. White,et al.  Autophagy Suppresses RIP Kinase-Dependent Necrosis Enabling Survival to mTOR Inhibition , 2012, PloS one.

[52]  P. Codogno,et al.  Autophagy Is a Protective Mechanism for Human Melanoma Cells under Acidic Stress* , 2012, The Journal of Biological Chemistry.

[53]  A. Tsirigos,et al.  Autophagy and senescence in cancer-associated fibroblasts metabolically supports tumor growth and metastasis via glycolysis and ketone production , 2012, Cell cycle.

[54]  G. Dorn,et al.  BNip3 Regulates Mitochondrial Function and Lipid Metabolism in the Liver , 2012, Molecular and Cellular Biology.

[55]  E. White Deconvoluting the context-dependent role for autophagy in cancer , 2012, Nature Reviews Cancer.

[56]  S. Rikka,et al.  Microtubule-associated Protein 1 Light Chain 3 (LC3) Interacts with Bnip3 Protein to Selectively Remove Endoplasmic Reticulum and Mitochondria via Autophagy* , 2012, The Journal of Biological Chemistry.

[57]  N. Mizushima,et al.  Structures containing Atg9A and the ULK1 complex independently target depolarized mitochondria at initial stages of Parkin-mediated mitophagy , 2012, Journal of Cell Science.

[58]  A. Thorburn,et al.  Chloroquine sensitizes breast cancer cells to chemotherapy independent of autophagy , 2012, Autophagy.

[59]  P. Xue,et al.  Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells , 2012, Nature Cell Biology.

[60]  K. Kraemer,et al.  SHINING A LIGHT ON XERODERMA PIGMENTOSUM , 2012, The Journal of investigative dermatology.

[61]  A. Cuervo,et al.  Autophagy and disease: always two sides to a problem , 2012, The Journal of pathology.

[62]  R. Amaravadi Autophagy in Tumor Immunity , 2011, Science.

[63]  M. Soengas,et al.  The gluttonous side of malignant melanoma: basic and clinical implications of macroautophagy , 2011, Pigment cell & melanoma research.

[64]  R. Camp,et al.  Punctate LC3B Expression Is a Common Feature of Solid Tumors and Associated with Proliferation, Metastasis, and Poor Outcome , 2011, Clinical Cancer Research.

[65]  Xinnan Wang,et al.  PINK1 and Parkin Target Miro for Phosphorylation and Degradation to Arrest Mitochondrial Motility , 2011, Cell.

[66]  Masaaki Komatsu,et al.  Autophagy: Renovation of Cells and Tissues , 2011, Cell.

[67]  Youngil Lee,et al.  Mitochondrial autophagy by Bnip3 involves Drp1-mediated mitochondrial fission and recruitment of Parkin in cardiac myocytes. , 2011, American journal of physiology. Heart and circulatory physiology.

[68]  Matthew West,et al.  ER Tubules Mark Sites of Mitochondrial Division , 2011, Science.

[69]  P. Vandenabeele,et al.  Autophagy: for better or for worse , 2011, Cell Research.

[70]  Christian V. Forst,et al.  Image-Based Genome-Wide siRNA Screen Identifies Selective Autophagy Factors , 2011, Nature.

[71]  J. Rak,et al.  H-ras up-regulates expression of BNIP3. , 2011, Anticancer research.

[72]  Andrea Ballabio,et al.  TFEB Links Autophagy to Lysosomal Biogenesis , 2011, Science.

[73]  K. O'Byrne,et al.  Receptor tyrosine kinases and their activation in melanoma , 2011, Pigment cell & melanoma research.

[74]  D. Klionsky,et al.  Mitochondria autophagy in yeast. , 2011, Antioxidants & redox signaling.

[75]  D. Sabatini,et al.  Defective regulation of autophagy upon leucine deprivation reveals a targetable liability of human melanoma cells in vitro and in vivo. , 2011, Cancer cell.

[76]  F. Lyng,et al.  Mitophagy and mitochondrial morphology in human melanoma-derived cells post exposure to simulated sunlight , 2011, International journal of radiation biology.

[77]  D. Krainc,et al.  Mitochondrial Parkin Recruitment Is Impaired in Neurons Derived from Mutant PINK1 Induced Pluripotent Stem Cells , 2011, The Journal of Neuroscience.

[78]  S. Rikka,et al.  Bnip3 impairs mitochondrial bioenergetics and stimulates mitochondrial turnover , 2011, Cell Death and Differentiation.

[79]  Marc Liesa,et al.  Pancreatic cancers require autophagy for tumor growth. , 2011, Genes & development.

[80]  H. Coller,et al.  Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. , 2011, Genes & development.

[81]  K. Nathanson,et al.  Measurements of Tumor Cell Autophagy Predict Invasiveness, Resistance to Chemotherapy, and Survival in Melanoma , 2011, Clinical Cancer Research.

[82]  K. Ryan,et al.  The multiple roles of autophagy in cancer , 2011, Carcinogenesis.

[83]  G. Fimia,et al.  Oncogenic B-RAF Signaling in Melanoma Impairs the Therapeutic Advantage of Autophagy Inhibition , 2011, Clinical Cancer Research.

[84]  Yongqiang Chen,et al.  The regulation of autophagy – unanswered questions , 2011, Journal of Cell Science.

[85]  C. Kenific,et al.  Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation , 2011, Molecular biology of the cell.

[86]  Eileen White,et al.  Autophagy and Metabolism , 2010, Science.

[87]  R. Youle,et al.  Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL , 2010, The Journal of cell biology.

[88]  J. Debnath,et al.  ATG12 Conjugation to ATG3 Regulates Mitochondrial Homeostasis and Cell Death , 2010, Cell.

[89]  G. Dorn,et al.  Nix Is Critical to Two Distinct Phases of Mitophagy, Reactive Oxygen Species-mediated Autophagy Induction and Parkin-Ubiquitin-p62-mediated Mitochondrial Priming* , 2010, The Journal of Biological Chemistry.

[90]  S. Rikka,et al.  Bnip3 mediates permeabilization of mitochondria and release of cytochrome c via a novel mechanism. , 2010, Journal of molecular and cellular cardiology.

[91]  P. Belenguer,et al.  The BH3‐only Bnip3 binds to the dynamin Opa1 to promote mitochondrial fragmentation and apoptosis by distinct mechanisms , 2010, EMBO reports.

[92]  A. Bosserhoff,et al.  Constitutive HIF-1 activity in malignant melanoma. , 2010, European journal of cancer.

[93]  D. Massi,et al.  Beclin 1 and LC3 autophagic gene expression in cutaneous melanocytic lesions. , 2010, Human pathology.

[94]  A. Whitworth,et al.  Drosophila Parkin requires PINK1 for mitochondrial translocation and ubiquitinates Mitofusin , 2010, Proceedings of the National Academy of Sciences.

[95]  J. Gamboa,et al.  Mitochondrial content and distribution changes specific to mouse diaphragm after chronic normobaric hypoxia. , 2010, American journal of physiology. Regulatory, integrative and comparative physiology.

[96]  V. Klump,et al.  Autophagy in cutaneous malignant melanoma , 2010, Journal of cutaneous pathology.

[97]  Fabienne C. Fiesel,et al.  PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1 , 2010, Nature Cell Biology.

[98]  Ivan Dikic,et al.  Nix is a selective autophagy receptor for mitochondrial clearance , 2010, EMBO reports.

[99]  Han Liu,et al.  BNIP3 mediates cell death by different pathways following localization to endoplasmic reticulum and mitochondrion , 2009, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[100]  J. Pouysségur,et al.  Atypical BH3-domains of BNIP3 and BNIP3L lead to autophagy in hypoxia , 2009, Autophagy.

[101]  Thomas Tüting,et al.  Targeted activation of innate immunity for therapeutic induction of autophagy and apoptosis in melanoma cells. , 2009, Cancer cell.

[102]  Ji Zhang,et al.  Role of BNIP3 and NIX in cell death, autophagy, and mitophagy , 2009, Cell Death and Differentiation.

[103]  Gyan Bhanot,et al.  Autophagy Suppresses Tumorigenesis through Elimination of p62 , 2009, Cell.

[104]  R. Nussbaum,et al.  Parkinson Phenotype in Aged PINK1-Deficient Mice Is Accompanied by Progressive Mitochondrial Dysfunction in Absence of Neurodegeneration , 2009, PloS one.

[105]  YongSung Kim,et al.  PINK1 controls mitochondrial localization of Parkin through direct phosphorylation. , 2008, Biochemical and biophysical research communications.

[106]  N. Wood,et al.  Mitochondrial function and morphology are impaired in parkin‐mutant fibroblasts , 2008, Annals of neurology.

[107]  Hansong Deng,et al.  The Parkinson's disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila , 2008, Proceedings of the National Academy of Sciences.

[108]  H. Sandoval,et al.  Essential role for Nix in autophagic maturation of erythroid cells , 2008, Nature.

[109]  Hong Wu,et al.  mTOR is activated in the majority of malignant melanomas. , 2008, The Journal of investigative dermatology.

[110]  Masaaki Komatsu,et al.  Homeostatic Levels of p62 Control Cytoplasmic Inclusion Body Formation in Autophagy-Deficient Mice , 2007, Cell.

[111]  M. You,et al.  Bnip3 Mediates the Hypoxia-induced Inhibition on Mammalian Target of Rapamycin by Interacting with Rheb* , 2007, Journal of Biological Chemistry.

[112]  A. Goldberg,et al.  FoxO3 controls autophagy in skeletal muscle in vivo. , 2007, Cell metabolism.

[113]  J. Opferman,et al.  NIX is required for programmed mitochondrial clearance during reticulocyte maturation , 2007, Proceedings of the National Academy of Sciences.

[114]  P. Guldberg,et al.  The genome and epigenome of malignant melanoma , 2007, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[115]  S. Rodríguez-Enríquez,et al.  Selective degradation of mitochondria by mitophagy. , 2007, Archives of biochemistry and biophysics.

[116]  R. Marais,et al.  Melanoma biology and new targeted therapy , 2007, Nature.

[117]  A. Chatterjee,et al.  Mitochondrial DNA mutations in human cancer , 2006, Oncogene.

[118]  Kevin Bray,et al.  Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. , 2006, Cancer cell.

[119]  A. Harris,et al.  HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors. , 2001, Cancer research.

[120]  K. Jimbow,et al.  Comparison of macromelanosomes and autophagic giant melanosome complexes in nevocellular nevi, lentigo simplex and malignant melanoma , 1982, Journal of cutaneous pathology.

[121]  K. Flaherty,et al.  Targeting the RAS pathway in melanoma. , 2012, Trends in molecular medicine.

[122]  Y. Hara,et al.  Overexpression of autophagy-related beclin-1 in advanced malignant melanoma and its low expression in melanoma-in-situ. , 2012, European journal of dermatology : EJD.

[123]  R. Youle,et al.  Mechanisms of mitophagy , 2010, Nature Reviews Molecular Cell Biology.

[124]  Claus Garbe,et al.  Melanoma epidemiology and trends. , 2009, Clinics in dermatology.