Molecular modelling of Jahn-Teller distortions in Cu(II)N6 complexes: elongations, compressions and the pathways in between.

Ligand Field Molecular Mechanics (LFMM) parameters have been optimised for six-coordinate Cu(II) complexes containing amine, pyridine, imidazole and pyrazine donors. As found in previous LFMM applications, the new parameters automatically generate distorted structures with the magnitudes of the Jahn-Teller elongations in good agreement with experiment. Here, we explore the rest of the potential energy surface. The introduction of axial strain drives the LFMM structures via rhombic geometries to the compressed structure, the latter corresponding to the saddle point between successive elongation axes. Calculated barrier heights between compressed and elongated geometries also agree well with available experimental data. In every case bar one, the LFMM predicts that the crystallographically observed elongation axis corresponds to the overall lowest energy well. The structural predictions are confirmed by independent density functional theory (DFT) optimisations. LFMM calculations on bis(2,5-pyrazolylpyridine)copper complexes display a smooth variation in structure as a function of pyrazolyl substituent from elongated for R = H through to fully compressed for R = (t)Bu. This behaviour is driven by the steric interactions with the ground state varying smoothly as a linear combination of {d(x2-y2)}1 and {d(z2)}1.

[1]  F. Allen The Cambridge Structural Database: a quarter of a million crystal structures and rising. , 2002, Acta crystallographica. Section B, Structural science.

[2]  Robert J. Deeth,et al.  Analytical derivatives, ?? bonding and d???s mixing in the ligand field molecular mechanics methodElectronic supplementary information (ESI) available: theoretical background. See http://www.rsc.org/suppdata/cp/b2/b203815c/ , 2002 .

[3]  Robert J Deeth,et al.  Molecular modelling for coordination compounds: Cu(II)-amine complexes. , 2005, Dalton transactions.

[4]  Evert Jan Baerends,et al.  Self-consistent molecular Hartree—Fock—Slater calculations I. The computational procedure , 1973 .

[5]  E. McInnes,et al.  Temperature dependence of the electronic ground states of two mononuclear, six-coordinate copper(II) centres , 2004 .

[6]  M. Gerloch,et al.  Ligand-field parameters and the stereochemical activity of d shells in trigonal-bipyramidal complexes of the first transition series , 1985 .

[7]  E. Baerends,et al.  A Theoretical study of the interaction of ethylene with transition metal complexes , 1972 .

[8]  Robert J. Deeth,et al.  A CLFSE/MM study on the role of ligand bite-angle in Cu(II)-catalyzed Diels-Alder reactions , 1999 .

[9]  H. A. Jahn,et al.  Stability of Polyatomic Molecules in Degenerate Electronic States. I. Orbital Degeneracy , 1937 .

[10]  Robert J. Deeth,et al.  A combined ligand field and density functional theory study of the structural and spectroscopic properties of [Cu(dien)2]2+ , 2001 .

[11]  Robert J. Deeth,et al.  Molecular Mechanics for Coordination Complexes: The Impact of Adding d-Electron Stabilization Energies , 1995 .

[12]  J. Ammeter,et al.  Static and dynamic Jahn-Teller distortions in CuN6 complexes. Crystal structures and EPR spectra of complexes between copper(II) and rigid, tridentate cis,cis-1,3,5-triaminocyclohexane (tach: Cu(tach)2(ClO4)2, Cu(tach)2(NO3)2. Crystal structure of Ni(tach)2(NO3)2 , 1979 .

[13]  M. A. Hitchman The Influence of Vibronic Coupling on the Spectroscopic Properties and Stereochemistry of Simple 4- and 6-Coordinate Copper(II) Complexes , 1994 .

[14]  G. Beddard,et al.  Interpretation of the temperature dependence of the crystal structure of [CuL2][BF4]2(L = 2,6-dipyrazol-1-ylpyridine) , 2003 .

[15]  M. Riley The effects of d-s mixing in low symmetry transition metal complexes , 1998 .

[16]  Robert J. Deeth,et al.  Factors influencing Jahn-Teller distortions in six-coordinate copper(II) and low-spin nickel(II) complexes , 1986 .

[17]  M. Gerloch,et al.  Redirected ligand-field analysis. 1. Ligand fields of coordination voids and "semicoordination" in copper(II) complexes , 1984 .

[18]  I. Bersuker,et al.  Modern aspects of the Jahn-Teller effect theory and applications to molecular problems. , 2001, Chemical reviews.

[19]  B. Hathaway A new look at the stereochemistry and electronic properties of complexes of the copper(II) ion , 1984 .

[20]  Tom Ziegler,et al.  The determination of molecular structures by density functional theory. The evaluation of analytical energy gradients by numerical integration , 1988 .

[21]  M. Halcrow Interpreting and controlling the structures of six-coordinate copper(II) centres – When is a compression really a compression? , 2003 .

[22]  R. Deeth,et al.  Molecular mechanics for multiple spin states of transition metal complexes , 2003 .

[23]  F. Matthias Bickelhaupt,et al.  Chemistry with ADF , 2001, J. Comput. Chem..

[24]  I. Bersuker Limitations of density functional theory in application to degenerate states , 1997, J. Comput. Chem..

[25]  M. Riley,et al.  Interpretation of the temperature dependent g values of the Cu(H2O)2+6 ion in several host lattices using a dynamic vibronic coupling model , 1987 .

[26]  J. Zhao,et al.  Copper complexes of 2,6-bis(iminomethyl)pyridine derivatives and of 1,3-bis(pyridin-2-yl)pyrazole. Effects of ligand bulk and conformational strain on the ground state of a six-co-ordinate copper(II) ion , 2000 .

[27]  Robert J. Deeth,et al.  The ligand field molecular mechanics model and the stereoelectronic effects of d and s electrons , 2001 .

[28]  J. G. Snijders,et al.  Towards an order-N DFT method , 1998 .

[29]  D. Reinen,et al.  The Interplay of Higher-Order Vibronic Coupling and Host-Lattice Strain in the 2Eg Ground State of Copper(II) — Elongated or Compressed Octahedra?* , 1997 .

[30]  R. Deeth,et al.  Molecular modelling for copper(II) centres , 1995 .

[31]  C. Simmons X-ray crystallographic evidence of vibronic coupling in pseudo-Jahn-Teller copper (II) complexes and monomeric cobalt-dioxygen complexes , 1993 .

[32]  Peter Comba,et al.  Molecular mechanics and the Jahn-Teller effect , 1994 .

[33]  J. Rawson,et al.  The effects of distal ligand substitution on the copper(II)/bis-(2,6-dipyrazol-1-ylpyridine) centre , 2001 .

[34]  D. Reinen,et al.  Geometry and Electronic Structure of CuCl(6)(4-) Polyhedra Doped into (3-Chloroanilinium)(8)[CdCl(6)]Cl(4)-An EPR and Structural Investigation. , 1996, Inorganic chemistry.

[35]  Evert Jan Baerends,et al.  Numerical integration for polyatomic systems , 1992 .

[36]  Robert J. Deeth,et al.  MOLECULAR MECHANICS CALCULATIONS ON IMINE AND MIXED-LIGAND SYSTEMS OF COIII , NIII AND CUII , 1997 .

[37]  Benjamin Williams-Hubbard,et al.  DommiMOE: An implementation of ligand field molecular mechanics in the molecular operating environment , 2005, J. Comput. Chem..

[38]  Evert Jan Baerends,et al.  Towards an order , 1998 .