TAUBERIAN THEOREMS IN THE STATISTICAL SENSE FOR THE WEIGHTED MEANS OF DOUBLE SEQUENCES
暂无分享,去创建一个
Let $p:=\{p_j\}_{j=0}^{\infty}$ and $q:=\{q_k\}_{k=0}^{\infty}$ be complex sequences with $p,q \in$ SVA. Assume that $\{s_{mn}\}_{m,n=0}^\infty$ is a double sequence in $\mathbf{C}$ (or one of $\mathbf{R}$, a Banach space, and an ordered linear space), with $s_{mn} \stackrel{st}{\rightarrow} s \hspace{6 pt} (\mbox{$\bar{\rm N}$},p,q;\alpha,\beta)$, where $(\alpha,\beta)=(1,1)$, $(1,0)$ or $(0,1)$. We give sufficient and/or necessary conditions under which $s_{mn} \stackrel{st}{\rightarrow} s$. The theory developed here is the statistical version of the work of Chen and Hsu in [{\em Anal. Math.}, {\bf 26} (2000), 243-262]. Our results generalize M\'oricz, [{\em J. Math. Anal. Appl.}, {\bf 286} (2003), 340-350].
[1] Tauberian theorems for double sequences that are statistically summable (C,1,1) , 2003 .
[2] Chang-Pao Chen,et al. Tauberian Theorems for Weighted Means of Double Sequences , 2000 .
[3] Ferenc Móricz,et al. Tauberian conditions, under which statistical convergence follows from statistical summability (C, 1) , 2002 .
[4] H. Fast,et al. Sur la convergence statistique , 1951 .
[5] Ferenc Móricz,et al. Statistical convergence of multiple sequences , 2003 .