Blind identification of non-linear quadratic systems using higher order cumulants and non-Gaussian input signals

This work concerns the problem of the identification of the kernels of non-linear quadratic systems using cumulants of the output data corrupted by a Gaussian noise, when the input is a stationary zero mean non-Gaussian white stochastic process. The proposed approach constitutes an extension of linear systems identification algorithm to non-linear quadratic systems using third-order cumulants. The developed algorithm is tested and compared with a recursive least square and a least mean square methods using different quadratic models for various values of signal to noise ratio and different sample sizes N. The simulation results show the efficiency and the accuracy of the proposed algorithm in non-linear quadratic system identification.

[1]  Stephen A. Billings,et al.  Identi cation of nonlinear systems-A survey , 1980 .

[2]  R. de Figueiredo The Volterra and Wiener theories of nonlinear systems , 1982, Proceedings of the IEEE.

[3]  E. J. Powers,et al.  Nonlinear channel equalization in digital satellite systems , 1993, Proceedings of GLOBECOM '93. IEEE Global Telecommunications Conference.

[4]  Ezio Biglieri,et al.  Analysis and compensation of nonlinearities in digital transmission systems , 1988, IEEE J. Sel. Areas Commun..

[5]  Jerry M. Mendel,et al.  Identification of nonminimum phase systems using higher order statistics , 1989, IEEE Trans. Acoust. Speech Signal Process..

[6]  Augusto Sarti,et al.  Performance analysis of digital radio links with nonlinear transmit amplifier and data predistorter with memory , 1989, IEEE International Conference on Communications, World Prosperity Through Communications,.

[7]  Simon Haykin,et al.  Adaptive filter theory (2nd ed.) , 1991 .

[8]  Nicholas Kalouptsidis,et al.  Blind identification of second order Hammerstein series , 2000, 2000 10th European Signal Processing Conference.

[9]  Abdelouahid Lyhyaoui,et al.  Identification of Quadratic Non Linear Systems Using Higher Order Statistics and Fuzzy Models , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[10]  Stephen A. Billings,et al.  Identi cation of a class of nonlinear systems using correlation analysis , 1978 .

[11]  Said Safi,et al.  Blind parametric identification of non-Gaussian FIR systems using higher order cumulants , 2004, Int. J. Syst. Sci..

[12]  A. Zeroual,et al.  Blind Identification in Noisy Environment of Nonminimum Phase Finite Impulse Response (FIR) System Using Higher Order Statistics , 2003 .

[13]  B. Widrow,et al.  Adaptive inverse control , 1987, Proceedings of 8th IEEE International Symposium on Intelligent Control.

[14]  Jitendra K. Tugnait,et al.  Recovering the Poles from Fourth-Order Cumulants of System Output , 1988, 1988 American Control Conference.

[15]  Souad Meddeb Identification des filtres de Volterra et des modèles bilinéaires : application à la communication par satellite , 2000 .

[16]  Alessandro Neri,et al.  Methods for estimating the autocorrelation function of complex Gaussian stationary processes , 1987, IEEE Trans. Acoust. Speech Signal Process..

[17]  V. J. O H N M A T H Adaptive Polynomial Filters , 2022 .

[18]  Jerry M. Mendel,et al.  Tutorial on higher-order statistics (spectra) in signal processing and system theory: theoretical results and some applications , 1991, Proc. IEEE.

[19]  Tommy W. S. Chow,et al.  Blind identification of quadratic nonlinear models using neural networks with higher order cumulants , 2000, IEEE Trans. Ind. Electron..

[20]  S. Haykin,et al.  Adaptive Filter Theory , 1986 .

[21]  Christian Jutten,et al.  Parametric approach to blind deconvolution of nonlinear channels , 2002, ESANN.

[22]  E. De Boer Cross-correlation function of a bandpass nonlinear network , 1976, Proceedings of the IEEE.

[23]  Nicholas Kalouptsidis,et al.  A cumulant based algorithm for the identification of input output quadratic systems , 2000, 2000 10th European Signal Processing Conference.