Diffusion behavior of copper atoms under Cu(II) reduction in Cucurbit[8]uril cavity at elevated temperatures

[1]  Oren A Scherman,et al.  Quantitative SERS using the sequestration of small molecules inside precise plasmonic nanoconstructs. , 2012, Nano letters.

[2]  R. Cao,et al.  Platinum nanoparticles stabilized by cucurbit[6]uril with enhanced catalytic activity and excellent poisoning tolerance for methanol electrooxidation. , 2012, Chemistry.

[3]  Jing Zhang,et al.  One-Step Fabrication of Supramolecular Microcapsules from Microfluidic Droplets , 2012, Science.

[4]  O. Scherman,et al.  A facile synthesis of dynamic supramolecular aggregates of cucurbit[n]uril (n=5-8) capped with gold nanoparticles in aqueous media. , 2012, Chemistry.

[5]  J. Radnik,et al.  TPR investigations on the reducibility of Cu supported on Al2O3, zeolite Y and SAPO-5 , 2011 .

[6]  Richard W. Taylor,et al.  Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril "glue". , 2011, ACS nano.

[7]  Xiaoyong Lu,et al.  Formation and stabilization of silver nanoparticles with cucurbit[n]urils (n = 5-8) and cucurbituril-based pseudorotaxanes in aqueous medium. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[8]  Samuel T. Jones,et al.  Supramolecular gold nanoparticle-polymer composites formed in water with cucurbit[8]uril. , 2011, Chemical communications.

[9]  V. Fedin,et al.  Crystal structure and chemical oxidation of the palladium(II) cyclam complex within the cavity of cucurbit[8]uril , 2010 .

[10]  V. Bakovets,et al.  Hydrogen reduction of the Cu(acac)2 complex sorbed by cucurbit[8]uril , 2010 .

[11]  O. Scherman,et al.  Site-selective immobilization of colloids on Au substrates via a noncovalent supramolecular "handcuff". , 2010, Langmuir : the ACS journal of surfaces and colloids.

[12]  B. Wagner,et al.  Isolation of the trans-I and trans-II isomers of CuII(cyclam) via complexation with the macrocyclic host cucurbit[8]uril , 2009 .

[13]  I. Chen,et al.  Octanethiolated Cu and Cu2O nanoparticles as ink to form metallic copper film , 2009 .

[14]  Mohammad Ali Vesaghi,et al.  XPS study of the Cu@Cu2O core-shell nanoparticles , 2008 .

[15]  San-Yuan Chen,et al.  In situ synthesis of hybrid nanocomposite with highly order arranged amorphous metallic copper nanoparticle in poly(2-hydroxyethyl methacrylate) and its potential for blood-contact uses. , 2008, Acta biomaterialia.

[16]  A. Corma,et al.  Gold nanoparticles in organic capsules: a supramolecular assembly of gold nanoparticles and cucurbituril. , 2007, Chemistry.

[17]  V. Bakovets,et al.  Copper localization in cucurbit[8]uril , 2007 .

[18]  T. Bessho,et al.  Preparation of Oleic Acid-capped Copper Nanoparticles , 2006 .

[19]  M. A. Zabelin,et al.  New size effect in the catalysis by interacting copper nanoparticles , 2005 .

[20]  Michel Meunier,et al.  Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins. , 2004, Journal of the American Chemical Society.

[21]  Barry B Snushall,et al.  Controlling factors in the synthesis of cucurbituril and its homologues. , 2001, The Journal of organic chemistry.

[22]  Kimoon Kim,et al.  Macrocycles within Macrocycles: Cyclen, Cyclam, and Their Transition Metal Complexes Encapsulated in Cucurbit[8]uril. , 2001, Angewandte Chemie.

[23]  William W. Yu,et al.  ANOMALOUSLY INCREASED EFFECTIVE THERMAL CONDUCTIVITIES OF ETHYLENE GLYCOL-BASED NANOFLUIDS CONTAINING COPPER NANOPARTICLES , 2001 .

[24]  Eunsung Lee,et al.  New Cucurbituril Homologues: Syntheses, Isolation, Characterization, and X-ray Crystal Structures of Cucurbit[n]uril (n = 5, 7, and 8) , 2000 .

[25]  Ci Huang,et al.  Fractal aggregation and optical absorption of copper nanoparticles prepared by in situ chemical reduction within a Cu2+-polymer complex , 1999 .

[26]  A. Kvit,et al.  Long- and short-distance ordering of the metal cores of giant Pd clusters , 1996 .

[27]  L. J. Bellamy The infra-red spectra of complex molecules , 1962 .