On the Spatial Entropy of Two-Dimensional Golden Mean

The aim of this paper is to derive a sharper lower bound for the spatial entropy of two-dimensional golden mean.

[1]  Solomon Lefschetz On the existence of loci with given singularities , 1913 .

[2]  P. W. Kasteleyn The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice , 1961 .

[3]  John Mallet-Paret,et al.  Pattern Formation and Spatial Chaos in Spatially Discrete Evolution Equations , 1995 .

[4]  Leon O. Chua,et al.  Cellular neural networks: applications , 1988 .

[5]  Song-Sun Lin,et al.  Spatial Entropy of One-Dimensional Cellular Neural Network , 2000, Int. J. Bifurc. Chaos.

[6]  CHUA Cellular Neural Networks : Theory LEON 0 , 2004 .

[7]  M. .. Moore Exactly Solved Models in Statistical Mechanics , 1983 .

[8]  Elliott H. Lleb Residual Entropy of Square Ice , 1967 .

[9]  Michael E. Paul,et al.  Matrix Subshifts for Zv Symbolic Dynamics , 1981 .

[10]  Shih-Feng Shieh,et al.  Cellular Neural Networks: Space-Dependent Template, Mosaic Patterns and Spatial Chaos , 2002, Int. J. Bifurc. Chaos.

[11]  LARRY TURYN Cellular Neural Networks: Asymmetric Space-Dependent Templates, Mosaic Patterns, and Spatial Chaos , 2004, Int. J. Bifurc. Chaos.

[12]  Lin-Bao Yang,et al.  Cellular neural networks: theory , 1988 .

[13]  Wen-Wei Lin,et al.  The Spatial Entropy of Two-Dimensional Subshifts of Finite Type , 2000, Int. J. Bifurc. Chaos.

[14]  Klaus Schmidt,et al.  Algebraic ideas in ergodic theory , 1990 .

[15]  Me Misiurewicz,et al.  A short proof of the variational principle for a ZN+ action on a compact space , 1975 .

[16]  W. Parry Intrinsic Markov chains , 1964 .

[17]  Elliott H Lieb,et al.  Relations between the ‘percolation’ and ‘colouring’ problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the ‘percolation’ problem , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[18]  C. Robinson Dynamical Systems: Stability, Symbolic Dynamics, and Chaos , 1994 .

[19]  R. Baxter Exactly solved models in statistical mechanics , 1982 .

[20]  D. Chillingworth DYNAMICAL SYSTEMS: STABILITY, SYMBOLIC DYNAMICS AND CHAOS , 1998 .