Computing the real Weyl group

Let g be a semisimple Lie algebra over the real numbers. We describe an explicit combinatorial construction of the real Weyl group of g with respect to a given Cartan subalgebra. An efficient computation of this Weyl group is important for the classification of regular semisimple subalgebras, real carrier algebras, and real nilpotent orbits associated with g; the latter have various applications in theoretical physics.

[1]  H. Dietrich,et al.  Regular subalgebras and nilpotent orbits of real graded Lie algebras , 2014, 1407.7850.

[2]  De Graaf,et al.  Lie Algebras: Theory and Algorithms , 2013 .

[3]  W. Ledermann INTRODUCTION TO LIE ALGEBRAS AND REPRESENTATION THEORY , 1974 .

[4]  Jeffrey Adams,et al.  Galois and Cartan cohomology of real groups , 2016, 1611.05956.

[5]  Armand Borel Linear Algebraic Groups , 1991 .

[6]  B. Hall Lie Groups, Lie Algebras, and Representations , 2003 .

[7]  J. Humphreys Introduction to Lie Algebras and Representation Theory , 1973 .

[8]  J. Humphreys,et al.  Linear Algebraic Groups , 1975 .

[9]  A. W. Knapp Lie groups beyond an introduction , 1988 .

[10]  Jeffrey Adams,et al.  Algorithms for representation theory of real reductive groups , 2008, Journal of the Institute of Mathematics of Jussieu.

[11]  Willem A. de Graaf,et al.  Computing with real Lie algebras: Real forms, Cartan decompositions, and Cartan subalgebras , 2013, J. Symb. Comput..

[12]  A. Borel,et al.  Introduction aux groupes arithmétiques , 1969 .

[13]  Jr. David A. Vogan Irreducible characters of semisimple Lie groups I , 1979 .

[14]  Arkady L. Onishchik,et al.  Lectures on Real Semisimple Lie Algebras and Their Representations , 2003 .

[15]  M. Trigiante,et al.  Stationary D = 4 black holes in supergravity: The issue of real nilpotent orbits , 2016, 1612.04743.

[16]  Robert Steinberg,et al.  Lectures on Chevalley Groups , 2016 .

[17]  S. Helgason Differential Geometry, Lie Groups, and Symmetric Spaces , 1978 .

[18]  Jr. David A. Vogan Irreducible characters of semisimple Lie groups IV. Character-multiplicity duality , 1982 .

[19]  D. Vogan Irreducible characters of semisimple lie groups III. Proof of Kazhdan-Lusztig conjecture in the integral case , 1983 .

[20]  H. Dietrich,et al.  Nilpotent orbits in real symmetric pairs and stationary black holes , 2016, 1606.02611.

[21]  Willem A. de Graaf,et al.  Computation with Linear Algebraic Groups , 2017 .