Computing the real Weyl group
暂无分享,去创建一个
[1] H. Dietrich,et al. Regular subalgebras and nilpotent orbits of real graded Lie algebras , 2014, 1407.7850.
[2] De Graaf,et al. Lie Algebras: Theory and Algorithms , 2013 .
[3] W. Ledermann. INTRODUCTION TO LIE ALGEBRAS AND REPRESENTATION THEORY , 1974 .
[4] Jeffrey Adams,et al. Galois and Cartan cohomology of real groups , 2016, 1611.05956.
[5] Armand Borel. Linear Algebraic Groups , 1991 .
[6] B. Hall. Lie Groups, Lie Algebras, and Representations , 2003 .
[7] J. Humphreys. Introduction to Lie Algebras and Representation Theory , 1973 .
[8] J. Humphreys,et al. Linear Algebraic Groups , 1975 .
[9] A. W. Knapp. Lie groups beyond an introduction , 1988 .
[10] Jeffrey Adams,et al. Algorithms for representation theory of real reductive groups , 2008, Journal of the Institute of Mathematics of Jussieu.
[11] Willem A. de Graaf,et al. Computing with real Lie algebras: Real forms, Cartan decompositions, and Cartan subalgebras , 2013, J. Symb. Comput..
[12] A. Borel,et al. Introduction aux groupes arithmétiques , 1969 .
[13] Jr. David A. Vogan. Irreducible characters of semisimple Lie groups I , 1979 .
[14] Arkady L. Onishchik,et al. Lectures on Real Semisimple Lie Algebras and Their Representations , 2003 .
[15] M. Trigiante,et al. Stationary D = 4 black holes in supergravity: The issue of real nilpotent orbits , 2016, 1612.04743.
[16] Robert Steinberg,et al. Lectures on Chevalley Groups , 2016 .
[17] S. Helgason. Differential Geometry, Lie Groups, and Symmetric Spaces , 1978 .
[18] Jr. David A. Vogan. Irreducible characters of semisimple Lie groups IV. Character-multiplicity duality , 1982 .
[19] D. Vogan. Irreducible characters of semisimple lie groups III. Proof of Kazhdan-Lusztig conjecture in the integral case , 1983 .
[20] H. Dietrich,et al. Nilpotent orbits in real symmetric pairs and stationary black holes , 2016, 1606.02611.
[21] Willem A. de Graaf,et al. Computation with Linear Algebraic Groups , 2017 .