Low rank differential equations for Hamiltonian matrix nearness problems
暂无分享,去创建一个
[1] L. Trefethen,et al. Spectra and Pseudospectra , 2020 .
[2] Nathan Coppedge,et al. Systems Theory , 2016 .
[3] L. Einkemmer. Structure preserving numerical methods for the Vlasov equation , 2016, 1604.02616.
[4] C. Lubich,et al. Low rank differential equations for Hamiltonian matrix nearness problems , 2014, Numerische Mathematik.
[5] Daniel Kressner,et al. An Error Analysis of Galerkin Projection Methods for Linear Systems with Tensor Product Structure , 2013, SIAM J. Numer. Anal..
[6] Assyr Abdulle,et al. Multilevel Monte Carlo Methods for Stochastic Elliptic Multiscale PDEs , 2013, Multiscale Model. Simul..
[7] Assyr Abdulle,et al. PIROCK: A swiss-knife partitioned implicit-explicit orthogonal Runge-Kutta Chebyshev integrator for stiff diffusion-advection-reaction problems with or without noise , 2013, J. Comput. Phys..
[8] Nicola Guglielmi,et al. Low-Rank Dynamics for Computing Extremal Points of Real Pseudospectra , 2013, SIAM J. Matrix Anal. Appl..
[9] D. Arnold,et al. Tensor product finite element differential forms and their approximation properties , 2012 .
[10] Nicola Guglielmi,et al. Erratum/Addendum: Differential Equations for Roaming Pseudospectra: Paths to Extremal Points and Boundary Tracking , 2012, SIAM J. Numer. Anal..
[11] G. Olsder. Mathematical Systems Theory , 2011 .
[12] Michael L. Overton,et al. Fast Algorithms for the Approximation of the Pseudospectral Abscissa and Pseudospectral Radius of a Matrix , 2011, SIAM J. Matrix Anal. Appl..
[13] Michael Karow,et al. Structured Pseudospectra for Small Perturbations , 2011, SIAM J. Matrix Anal. Appl..
[14] Volker Mehrmann,et al. Perturbation Theory for Hamiltonian Matrices and the Distance to Bounded-Realness , 2011, SIAM J. Matrix Anal. Appl..
[15] Nicola Guglielmi,et al. Differential Equations for Roaming Pseudospectra: Paths to Extremal Points and Boundary Tracking , 2011, SIAM J. Numer. Anal..
[16] Daniel Kressner,et al. On the computation of structured singular values and pseudospectra , 2010, Syst. Control. Lett..
[17] João Pedro Hespanha,et al. Linear Systems Theory , 2009 .
[18] Luca Dieci,et al. Two-Parameter SVD: Coalescing Singular Values and Periodicity , 2009, SIAM J. Matrix Anal. Appl..
[19] Othmar Koch,et al. Dynamical Low-Rank Approximation , 2007, SIAM J. Matrix Anal. Appl..
[20] S. Rump. EIGENVALUES, PSEUDOSPECTRUM AND STRUCTURED PERTURBATIONS , 2006 .
[21] M. Overton,et al. On computing the complex passivity radius , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.
[22] T. Wagenknecht,et al. Structured pseudospectra in structural engineering , 2005 .
[23] Athanasios C. Antoulas,et al. Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.
[24] Athanasios C. Antoulas,et al. Approximation of Large-Scale Dynamical Systems (Advances in Design and Control) (Advances in Design and Control) , 2005 .
[25] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[26] Daniel Kressner,et al. On the Condition of a Complex Eigenvalue under Real Perturbations , 2004 .
[27] P. Lancaster,et al. A Precise Bound For Gyroscopic Stabilization , 2000 .
[28] Volker Mehrmann,et al. Structure-Preserving Methods for Computing Eigenpairs of Large Sparse Skew-Hamiltonian/Hamiltonian Pencils , 2001, SIAM J. Sci. Comput..
[29] Lloyd N. Trefethen,et al. Computation of pseudospectra , 1999, Acta Numerica.
[30] Stephen P. Boyd,et al. A bisection method for computing the H∞ norm of a transfer matrix and related problems , 1989, Math. Control. Signals Syst..
[31] C. D. Meyer,et al. Derivatives and perturbations of eigenvectors , 1988 .
[32] C. Loan,et al. A Schur decomposition for Hamiltonian matrices , 1981 .
[33] John B. Conway,et al. Finite-dimensional points of continuity of Lat , 1980 .
[34] A. Abdulle,et al. Fully discrete analysis of the heterogeneous multiscale method for elliptic problems with multiple scales , 2015 .
[35] Raul Tempone,et al. A quasi-optimal sparse grids procedure for groundwater flows , 2014 .
[36] D. Kressner,et al. Structured Canonical Forms For Products Of (Skew-) Symmetric Matrices And The Matrix Equation XAX = B , 2013 .
[37] A. Quarteroni,et al. Uncertainty quantification of human arterial network , 2012 .
[38] Volker Mehrmann,et al. Perturbation of purely imaginary eigenvalues of Hamiltonian matrices under structured perturbations , 2008 .
[39] Diederich Hinrichsen,et al. Mathematical Systems Theory I , 2006, IEEE Transactions on Automatic Control.
[40] Diederich Hinrichsen,et al. Modelling, state space analysis, stability and robustness , 2005 .
[41] L. Trefethen,et al. Spectra and pseudospectra : the behavior of nonnormal matrices and operators , 2005 .
[42] Brian D. O. Anderson,et al. Riccati Equations, Network Theory and Brune Synthesis: Old Solutions for Contemporary Problems , 1999 .
[43] Chao Yang,et al. ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.
[44] N. S. Barnett,et al. Private communication , 1969 .
[45] Tosio Kato. Perturbation theory for linear operators , 1966 .