Catechol derivatives-coated Fe3O4 and gamma-Fe2O3 nanoparticles as potential MRI contrast agents.

[1]  N. Dimitrijević,et al.  Photocatalytic probing of DNA sequence by using TiO2/dopamine-DNA triads , 2007 .

[2]  A. Lu,et al.  Magnetic nanoparticles: synthesis, protection, functionalization, and application. , 2007, Angewandte Chemie.

[3]  G. Alarcón-Ángeles,et al.  New insights on the nature of the chemical species involved during the process of dopamine deprotonation in aqueous solution: theoretical and experimental study. , 2007, The journal of physical chemistry. B.

[4]  Zhichuan J. Xu,et al.  Linking Hydrophilic Macromolecules to Monodisperse Magnetite (Fe(3)O(4)) Nanoparticles via Trichloro-s-triazine. , 2006, Chemistry of materials : a publication of the American Chemical Society.

[5]  J. Greneche,et al.  Magnetic properties of zinc ferrite nanoparticles synthesized by hydrolysis in a polyol medium , 2006 .

[6]  Ke Tao,et al.  Facile Interfacial Coprecipitation To Fabricate Hydrophilic Amine-Capped Magnetite Nanoparticles , 2006 .

[7]  J. Greneche,et al.  Synthesis of nickel–zinc ferrite nanoparticles in polyol: morphological, structural and magnetic studies , 2006 .

[8]  V. Suriyanon,et al.  IN R , 2006 .

[9]  V. Rotello,et al.  Surface PEGylation and Ligand Exchange Chemistry of FePt Nanoparticles for Biological Applications , 2005 .

[10]  Ajay Kumar Gupta,et al.  Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. , 2005, Biomaterials.

[11]  C. Serna,et al.  Surface characterisation of dextran-coated iron oxide nanoparticles prepared by laser pyrolysis and coprecipitation , 2005 .

[12]  R. Seshadri,et al.  Magnetic properties of capped, soluble MnFe2O4 nanoparticles , 2005 .

[13]  Taeghwan Hyeon,et al.  Ultra-large-scale syntheses of monodisperse nanocrystals , 2004, Nature materials.

[14]  O. Stéphan,et al.  Influence of the synthesis parameters on the cationic distribution of ZnFe2O4 nanoparticles obtained by forced hydrolysis in polyol medium , 2004 .

[15]  Bing Xu,et al.  Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles. , 2004, Journal of the American Chemical Society.

[16]  É. Duguet,et al.  Magnetic nanoparticle design for medical diagnosis and therapy , 2004 .

[17]  J. Greneche,et al.  Nickel ferrite nanoparticles: elaboration in polyol medium via hydrolysis, and magnetic properties , 2004 .

[18]  M. Miki-Yoshida,et al.  Comparative study of the microstructural and magnetic properties of spinel ferrites obtained by co-precipitation , 2004 .

[19]  Mingyuan Gao,et al.  One-Pot Reaction to Synthesize Water-Soluble Magnetite Nanocrystals , 2004 .

[20]  A. Curtis,et al.  Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro. , 2003, Biomaterials.

[21]  G. Mathur,et al.  Comparative study on the synthesis of γ-Fe2O3 and Fe3O4 nanocrystals using high-temperature solution-phase technique , 2003 .

[22]  Tijana Rajh,et al.  Surface Restructuring of Nanoparticles: An Efficient Route for Ligand−Metal Oxide Crosstalk , 2002 .

[23]  T. Rajh,et al.  Fe2O3 Nanoparticle Structures Investigated by X-ray Absorption Near-Edge Structure, Surface Modifications, and Model Calculations , 2002 .

[24]  Hao Zeng,et al.  Size-controlled synthesis of magnetite nanoparticles. , 2002, Journal of the American Chemical Society.

[25]  K. Das,et al.  Monolayer Exchange Chemistry of γ-Fe2O3 Nanoparticles , 2002 .

[26]  T. Belin,et al.  Influence of grain size, oxygen stoichiometry, and synthesis conditions on the γ-Fe2O3 vacancies ordering and lattice parameters , 2002 .

[27]  S. Ammar,et al.  Magnetic properties of ultrafine cobalt ferrite particles synthesized by hydrolysis in a polyol medium , 2001 .

[28]  P. E. Laibinis,et al.  Polymerization of Olefin-Terminated Surfactant Bilayers on Magnetic Fluid Nanoparticles , 2000 .

[29]  L. Poul,et al.  Layered Hydroxide Metal Acetates (Metal = Zinc, Cobalt, and Nickel): Elaboration via Hydrolysis in Polyol Medium and Comparative Study , 2000 .

[30]  Weissleder,et al.  Approaches and agents for imaging the vascular system. , 1999, Advanced drug delivery reviews.

[31]  F. Favier,et al.  Electrochemical Synthesis for the Control of γ-Fe2O3 Nanoparticle Size. Morphology, Microstructure, and Magnetic Behavior , 1999 .

[32]  U. Schwertmann,et al.  The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses , 2003 .

[33]  D. Shah,et al.  Synthesis of high-coercivity cobalt ferrite particles using water-in-oil microemulsions , 1996 .

[34]  M. Senna,et al.  Preparation of Ultrafine Fe3O4Particles by Precipitation in the Presence of PVA at High pH , 1996 .

[35]  Dong Hoon Lee,et al.  Characterization of the magnetic properties and transport mechanisms of CoxFe3−xO4 spinel , 1995 .

[36]  E. Tronc,et al.  Transformation of ferric hydroxide into spinel by iron(II) adsorption , 1992 .

[37]  E. Tomlinson Theory and practice of site-specific drug delivery , 1987 .