On skew polynomials over Ikeda-Nakayama rings

Abstract A ring R is called a left Ikeda-Nakayama ring (left IN-ring) if the right annihilator of the intersection of any two left ideals is the sum of the two right annihilators. Also a ring R is called a right SA-ring if the sum of right annihilators of two ideals is a right annihilator of an ideal of R. In this paper for a compatible endomorphism α of R, we show that: (i) If is a left IN-ring, then R is an Armendariz left IN-ring. (ii) If R is a reduced left IN-ring with finitely many minimal prime ideals, then is a left IN-ring. (iii) is a right SA-ring, if and only if R is a quasi-Armendariz right SA-ring. We give a class of non-reduced rings R such that is left IN-ring. Also we give some examples to show that assumption compatibility on α is not superfluous.

[1]  E. Hashemi Compatible ideals and radicals of Ore extensions. , 2006 .

[2]  C. R. Hajarnavis AN INTRODUCTION TO NONCOMMUTATIVE NOETHERIAN RINGS , 1991 .

[3]  A. Alhevaz,et al.  Some types of ring elements in Ore extensions over noncommutative rings , 2017 .

[4]  T. Kwak,et al.  On Skew Armendariz Rings , 2003 .

[5]  Muhittin Başer,et al.  QUASI-ARMENDARIZ PROPERTY FOR SKEW POLYNOMIAL RINGS , 2011 .

[6]  Yiqiang Zhou,et al.  Armendariz and Reduced Rings , 2004 .

[7]  N. H. Shuker,et al.  On Dual Rings , 2004 .

[8]  N. Mahdou,et al.  On Armendariz rings. , 2009 .

[9]  W. K. Nicholson,et al.  Ikeda–Nakayama Rings , 2000 .

[10]  C. R. Hajarnavis,et al.  On dual rings and their modules , 1985 .

[11]  Y. Hirano On annihilator ideals of a polynomial ring over a noncommutative ring , 2002 .

[12]  G. Birkenmeier,et al.  When is a Sum of Annihilator Ideals an Annihilator Ideal? , 2015 .

[13]  J. McConnell,et al.  Noncommutative Noetherian Rings , 2001 .

[14]  A. Moussavi,et al.  Polynomial extensions of quasi-Baer rings , 2005 .

[15]  Kenneth A. Brown,et al.  Lectures on Algebraic Quantum Groups , 2002 .

[16]  M. Tamer Kosan,et al.  The Armendariz module and its application to the Ikeda-Nakayama module , 2006, Int. J. Math. Math. Sci..

[17]  D. D. Anderson A note on minimal prime ideals , 1994 .

[18]  Ebrahim Hashemi,et al.  Prime Ideals and Strongly Prime Ideals of Skew Laurent Polynomial Rings , 2008, Int. J. Math. Math. Sci..

[19]  Yang Lee,et al.  SKEW POLYNOMIAL RINGS OVER SEMIPRIME RINGS , 2010 .

[20]  T. Nakayama,et al.  On some characteristic properties of quasi-Frobenius and regular rings , 1954 .

[21]  Y. Hirano,et al.  Semiprime ore extensions , 2000 .