Machine-guided path sampling to discover mechanisms of molecular self-organization

[1]  M. Demirel,et al.  Biosynthetic self-healing materials for soft machines , 2020, Nature Materials.

[2]  Dario Izzo,et al.  dcgp: Differentiable Cartesian Genetic Programming made easy , 2020, J. Open Source Softw..

[3]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[4]  Andrew L. Ferguson,et al.  Machine learning for collective variable discovery and enhanced sampling in biomolecular simulation , 2020, Molecular Physics.

[5]  Frank Noé,et al.  Machine learning for molecular simulation , 2019, Annual review of physical chemistry.

[6]  Qiang Cui,et al.  Faculty Opinions recommendation of Boltzmann generators: Sampling equilibrium states of many-body systems with deep learning. , 2019, Faculty Opinions – Post-Publication Peer Review of the Biomedical Literature.

[7]  Stefan Duffner,et al.  Machine Learning of committor functions for predicting high impact climate events , 2019, 1910.11736.

[8]  Arjun,et al.  Unbiased atomistic insight in the competing nucleation mechanisms of methane hydrates , 2019, Proceedings of the National Academy of Sciences.

[9]  F. Noé,et al.  Boltzmann generators: Sampling equilibrium states of many-body systems with deep learning , 2019, Science.

[10]  Johannes L. Schönberger,et al.  SciPy 1.0: fundamental algorithms for scientific computing in Python , 2019, Nature Methods.

[11]  Max Tegmark,et al.  AI Feynman: A physics-inspired method for symbolic regression , 2019, Science Advances.

[12]  Mark E. Tuckerman,et al.  Neural-Network-Based Path Collective Variables for Enhanced Sampling of Phase Transformations. , 2019, Physical review letters.

[13]  Frank Noé,et al.  OpenPathSampling: A Python Framework for Path Sampling Simulations. 2. Building and Customizing Path Ensembles and Sample Schemes , 2018, bioRxiv.

[14]  Frank Noé,et al.  OpenPathSampling: A Python Framework for Path Sampling Simulations. 1. Basics , 2018, bioRxiv.

[15]  Patrice Koehl,et al.  Faculty Opinions recommendation of OpenMM 7: Rapid development of high performance algorithms for molecular dynamics. , 2018, Faculty Opinions – Post-Publication Peer Review of the Biomedical Literature.

[16]  D. Gil-Carton,et al.  Molecular nucleation mechanisms and control strategies for crystal polymorph selection , 2018, Nature.

[17]  Demis Hassabis,et al.  Mastering the game of Go without human knowledge , 2017, Nature.

[18]  Gerhard Hummer,et al.  Transition path sampling of rare events by shooting from the top. , 2017, The Journal of chemical physics.

[19]  Noam Bernstein,et al.  Machine learning unifies the modeling of materials and molecules , 2017, Science Advances.

[20]  Gerhard Hummer,et al.  A Eukaryotic Sensor for Membrane Lipid Saturation , 2017 .

[21]  Ioannis G Kevrekidis,et al.  Intrinsic map dynamics exploration for uncharted effective free-energy landscapes , 2016, Proceedings of the National Academy of Sciences.

[22]  Vijay S. Pande,et al.  OpenMM 7: Rapid development of high performance algorithms for molecular dynamics , 2016, bioRxiv.

[23]  Jian Sun,et al.  Identity Mappings in Deep Residual Networks , 2016, ECCV.

[24]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[25]  William A. Eaton,et al.  Structural origin of slow diffusion in protein folding , 2015, Science.

[26]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[27]  Shane Legg,et al.  Human-level control through deep reinforcement learning , 2015, Nature.

[28]  J Behler,et al.  Representing potential energy surfaces by high-dimensional neural network potentials , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[29]  Brian C. Barnes,et al.  Two-component order parameter for quantifying clathrate hydrate nucleation and growth. , 2014, The Journal of chemical physics.

[30]  Alexander M Berezhkovskii,et al.  Diffusion along the splitting/commitment probability reaction coordinate. , 2013, The journal of physical chemistry. B.

[31]  Christoph Dellago,et al.  Neural networks for local structure detection in polymorphic systems. , 2013, The Journal of chemical physics.

[32]  Peter M. Kasson,et al.  GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit , 2013, Bioinform..

[33]  John D. Chodera,et al.  Time Step Rescaling Recovers Continuous-Time Dynamical Properties for Discrete-Time Langevin Integration of Nonequilibrium Systems , 2013, The journal of physical chemistry. B.

[34]  W F Drew Bennett,et al.  Improved Parameters for the Martini Coarse-Grained Protein Force Field. , 2013, Journal of chemical theory and computation.

[35]  A. J. Ballard,et al.  Toward the Mechanism of Ionic Dissociation in Water , 2012, The journal of physical chemistry. B.

[36]  Daniel Müllner,et al.  Modern hierarchical, agglomerative clustering algorithms , 2011, ArXiv.

[37]  Oliver Beckstein,et al.  MDAnalysis: A toolkit for the analysis of molecular dynamics simulations , 2011, J. Comput. Chem..

[38]  Sergei V Krivov,et al.  Optimal dimensionality reduction of complex dynamics: the chess game as diffusion on a free-energy landscape. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  J. Behler Atom-centered symmetry functions for constructing high-dimensional neural network potentials. , 2011, The Journal of chemical physics.

[40]  C. Vega,et al.  Determining the three-phase coexistence line in methane hydrates using computer simulations. , 2010, The Journal of chemical physics.

[41]  Liam C Jacobson,et al.  Amorphous precursors in the nucleation of clathrate hydrates. , 2010, Journal of the American Chemical Society.

[42]  E. D. Sloan,et al.  Microsecond Simulations of Spontaneous Methane Hydrate Nucleation and Growth , 2009, Science.

[43]  Hod Lipson,et al.  Distilling Free-Form Natural Laws from Experimental Data , 2009, Science.

[44]  Ron Elber,et al.  On the assumptions underlying milestoning. , 2008, The Journal of chemical physics.

[45]  T. Cheatham,et al.  Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations , 2008, The journal of physical chemistry. B.

[46]  R. Larson,et al.  The MARTINI Coarse-Grained Force Field: Extension to Proteins. , 2008, Journal of chemical theory and computation.

[47]  Carsten Kutzner,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[48]  Frank Hansen,et al.  An approach for determining relative input parameter importance and significance in artificial neural networks , 2007 .

[49]  D. Tieleman,et al.  The MARTINI force field: coarse grained model for biomolecular simulations. , 2007, The journal of physical chemistry. B.

[50]  Michele Parrinello,et al.  Generalized neural-network representation of high-dimensional potential-energy surfaces. , 2007, Physical review letters.

[51]  M. Parrinello,et al.  Canonical sampling through velocity rescaling. , 2007, The Journal of chemical physics.

[52]  B. Trout,et al.  Obtaining reaction coordinates by likelihood maximization. , 2006, The Journal of chemical physics.

[53]  W. E,et al.  Towards a Theory of Transition Paths , 2006 .

[54]  C. Vega,et al.  A potential model for the study of ices and amorphous water: TIP4P/Ice. , 2005, The Journal of chemical physics.

[55]  G. Hummer,et al.  Reaction coordinates and rates from transition paths. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Aaron R Dinner,et al.  Automatic method for identifying reaction coordinates in complex systems. , 2005, The journal of physical chemistry. B.

[57]  A. Mark,et al.  Coarse grained model for semiquantitative lipid simulations , 2004 .

[58]  G. Hummer From transition paths to transition states and rate coefficients. , 2004, The Journal of chemical physics.

[59]  C. Dellago,et al.  Reaction coordinates of biomolecular isomerization. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[60]  David Chandler,et al.  Finding transition pathways: throwing ropes over rough mountain passes, in the dark , 1998 .

[61]  Christoph Dellago,et al.  Efficient transition path sampling: Application to Lennard-Jones cluster rearrangements , 1998 .

[62]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997, J. Comput. Chem..

[63]  P. Rodger,et al.  Simulations of the methane hydrate/methane gas interface near hydrate forming conditions conditions , 1996 .

[64]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[65]  D. van der Spoel,et al.  GROMACS: A message-passing parallel molecular dynamics implementation , 1995 .

[66]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[67]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[68]  Oliver Beckstein,et al.  MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations , 2016, SciPy.

[69]  David Chandler,et al.  Transition path sampling: throwing ropes over rough mountain passes, in the dark. , 2002, Annual review of physical chemistry.