Some determinants of path generating functions

We evaluate four families of determinants of matrices, where the entries are sums or differences of generating functions for paths consisting of up-steps, down-steps and level steps. By specialisation, these determinant evaluations have numerous corollaries. In particular, they cover numerous determinant evaluations of combinatorial numbers-most notably of Catalan, ballot, and of Motzkin numbers-that appeared previously in the literature.

[1]  Christian Krattenthaler,et al.  The Hilbert Series of Pfaffian Rings , 2004 .

[2]  Chris Christensen,et al.  Algebra, Arithmetic and Geometry with Applications , 2004 .

[3]  John R. Stembridge,et al.  Nonintersecting Paths, Pfaffians, and Plane Partitions , 1990 .

[4]  C. Jordan Advanced Determinant Calculus: a Complement , 2008 .

[5]  Charalambos A. Charalambides,et al.  Enumerative combinatorics , 2018, SIGA.

[6]  Ömer Egecioglu,et al.  A multilinear operator for almost product evaluation of Hankel determinants , 2010, J. Comb. Theory, Ser. A.

[7]  Christian Krattenthaler Watermelon configurations with wall interaction: exact and asymptotic results , 2005 .

[8]  Doron Zeilberger,et al.  Determinants through the Looking Glass , 2001, Adv. Appl. Math..

[9]  C. Krattenthaler ADVANCED DETERMINANT CALCULUS , 1999, math/9902004.

[10]  Narayanaswamy Balakrishnan,et al.  Advances in Combinatorial Methods and Applications to Probability and Statistics , 1998 .

[11]  D. Bressoud Proofs and Confirmations: The Story of the Alternating-Sign Matrix Conjecture , 1999 .

[12]  Ömer Egecioglu,et al.  Almost Product Evaluation of Hankel Determinants , 2007, Electron. J. Comb..

[13]  Christian Krattenthaler,et al.  Lattice Path Proofs for Determinantal Formulas for Symplectic and Orthogonal Characters , 1997, J. Comb. Theory, Ser. A.

[14]  On multiplicities of points on Schubert varieties in Grassmannians. , 2000, math/0011129.

[15]  I. Gessel,et al.  Binomial Determinants, Paths, and Hook Length Formulae , 1985 .

[16]  M. Aigner Catalan and other numbers: a recurrent theme , 2001 .

[17]  B. Lindström On the Vector Representations of Induced Matroids , 1973 .

[18]  W. Marsden I and J , 2012 .

[19]  On Multiplicities of Points on Schubert Varieties in Graßmannians II , 2001, math/0112285.

[20]  Doron Zeilberger The Holonomic Ansatz II. Automatic Discovery(!) And Proof(!!) of Holonomic Determinant Evaluations , 2007 .

[21]  Christian Krattenthaler,et al.  The Enumeration of Lattice Paths With Respect to Their Number of Turns , 1997 .

[22]  W. Rheinboldt,et al.  Generalized hypergeometric functions , 1968 .

[23]  H. Crapo,et al.  Algebraic Combinatorics and Computer Science , 2001 .

[24]  Christian Krattenthaler Determinant Identities and a Generalization of the Number of Totally Symmetric Self-complementary Plane Partitions , 1997, Electron. J. Comb..