ASSET PRICING WITH NO EXOGENOUS PROBABILITY MEASURE

In this paper, we propose a model of financial markets in which agents have limited ability to trade and no probability is given from the outset. In the absence of arbitrage opportunities, assets are priced according to a probability measure that lacks countable additivity. Despite finite additivity, we obtain an explicit representation of the expected value with respect to the pricing measure, based on some new results on finitely additive measures. From this representation we derive an exact decomposition of the risk premium as the sum of the correlation of returns with the market price of risk and an additional term, the purely finitely additive premium, related to the jumps of the return process. We also discuss the implications of the absence of free lunches.

[1]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .

[2]  Stephen E. Wilcox Investor Psychology and Security Market Under- and Overreactions , 1999 .

[3]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[4]  Kim C. Border,et al.  Infinite dimensional analysis , 1994 .

[5]  M. Rubinstein. Implied Binomial Trees , 1994 .

[6]  R. Bishop,et al.  The Valuation Problem , 1986 .

[7]  Karl Halvor Teigen,et al.  Studies in subjective probability III: The unimportance of alternatives , 1983 .

[8]  E. Michael Continuous Selections. I , 1956 .

[9]  Kerry Back,et al.  Asset pricing for general processes , 1991 .

[10]  Christophe Stricker,et al.  Arbitrage et lois de martingale , 1990 .

[11]  The Second Fundamental Theorem of Asset Pricing , 1999 .

[12]  Fernando Zapatero,et al.  Asset prices in an exchange economy with habit formation , 1991 .

[13]  I. Glicksberg A FURTHER GENERALIZATION OF THE KAKUTANI FIXED POINT THEOREM, WITH APPLICATION TO NASH EQUILIBRIUM POINTS , 1952 .

[14]  Harold V. Bozell A Valuation Problem , 1915 .

[15]  R. Jarrow,et al.  The Second Fundamental Theorem of Asset Pricing ? A New Approach , 1999 .

[16]  J. Harrison,et al.  Martingales and stochastic integrals in the theory of continuous trading , 1981 .

[17]  Robert E. Megginson An Introduction to Banach Space Theory , 1998 .

[18]  Martin Schweizer,et al.  Martingale densities for general asset prices , 1992 .

[19]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[20]  Gianluca Cassese A Note on Asset Bubbles in Continuous-Time , 2001 .

[21]  K. Teigen Subjective sampling distributions and the additivity of estimates , 1974 .

[22]  Completeness of securities market models--an operator point of view , 1999 .

[23]  A. Tversky Utility theory and additivity analysis of risky choices. , 1967, Journal of experimental psychology.

[24]  L. J. Savage,et al.  The Foundations of Statistics , 1955 .

[25]  K. Yosida,et al.  Finitely additive measures , 1952 .

[26]  F. Delbaen,et al.  A general version of the fundamental theorem of asset pricing , 1994 .

[27]  Stephen A. Clark Arbitrage approximation theory , 2000 .

[28]  R. Jarrow,et al.  Jump Risks and the Intertemporal Capital Asset Pricing Model , 1984 .

[29]  I. Gilboa,et al.  Case-Based Decision Theory , 1995 .

[30]  R. C. Merton,et al.  AN INTERTEMPORAL CAPITAL ASSET PRICING MODEL , 1973 .

[31]  L. J. Savage,et al.  The Foundations of Statistics , 1955 .

[32]  Kent D. Daniel,et al.  Overconfidence, Arbitrage, and Equilibrium Asset Pricing , 2001 .

[33]  Christophe Stricker,et al.  Lois de martingale, densités et décomposition de Föllmer Schweizer , 1992 .

[34]  P. Protter Stochastic integration and differential equations , 1990 .

[35]  A. Tversky,et al.  Support theory: A nonextensional representation of subjective probability. , 1994 .

[36]  M. Sion On general minimax theorems , 1958 .

[37]  S. Pliska A Stochastic Calculus Model of Continuous Trading: Return Processes and Investment Plans , 1982 .

[38]  D. Schmeidler Subjective Probability and Expected Utility without Additivity , 1989 .

[39]  J. Campbell,et al.  The New Palgrave Dictionary of Money and Finance , 1994 .

[40]  David M. Kreps Arbitrage and equilibrium in economies with infinitely many commodities , 1981 .

[41]  K. Arrow The Role of Securities in the Optimal Allocation of Risk-bearing , 1964 .

[42]  David M. Kreps,et al.  Martingales and arbitrage in multiperiod securities markets , 1979 .

[43]  Stephen A. Clark The valuation problem in arbitrage price theory , 1993 .

[44]  Darrell Duffie,et al.  Asset Pricing with Heterogeneous Consumers , 1996, Journal of Political Economy.

[45]  F. Smithies Linear Operators , 2019, Nature.

[46]  L. Dubins Paths of finitely additive brownian motion need not be bizarre , 1999 .

[47]  A. Morse,et al.  Extensions of Linear Functionals, with Applications to Limits, Integrals, Measures, and Densities , 1938 .

[48]  J. Harrison,et al.  A stochastic calculus model of continuous trading: Complete markets , 1983 .

[49]  Larry G. Epstein,et al.  Asset Pricing with Stochastic Differential Utility , 1992 .

[50]  Harry M. Markowitz,et al.  Portfolio Analysis with Factors and Scenarios , 1981 .