Altered solar wind-magnetosphere interaction at low Mach numbers: Coronal mass ejections

[1] We illustrate some fundamental alterations of the solar wind-magnetosphere interaction that occur during low Mach number solar wind. We first show that low Mach number solar wind conditions are often characteristic of coronal mass ejections (CMEs) and magnetic clouds in particular. We then illustrate the pivotal role of the magnetosheath. This comes from the fact that low Mach number solar wind leads to the formation of a low thermal β magnetosheath downstream of the bow shock. This property influences magnetic forces and currents, in particular, and in turn alters magnetosheath-magnetosphere coupling. The implications of this unusual regime of interaction have generally been overlooked. Potentially affected phenomena include the following: (1) asymmetric magnetosheath flows (with substantial enhancements), (2) asymmetric magnetopause and magnetotail shapes, (3) changes in the development of the Kelvin-Helmholtz instability and giant spiral auroral features, (4) variations in the controlling factors of dayside magnetic reconnection, (5) cross polar cap potential saturation and Alfven wings, and (6) global sawtooth oscillations. Here we examine these phenomena, primarily by use of global magnetohydrodynamic simulations, and discuss the mechanisms that rule such an altered interaction. We emphasize the fact that all these effects tend to occur simultaneously so as to render the solar wind-magnetosphere interaction drastically different from the more typical high Mach number case. In addition to the more extensively studied inner magnetosphere and magnetotail processes, these effects may have important implications during CME-driven storms at Earth, as well as at other astronomical bodies such as Mercury.

[1]  J. Lyon,et al.  Solar wind density control of energy transfer to the magnetosphere , 2004 .

[2]  M. Fujimoto,et al.  Single-spacecraft detection of rolled-up Kelvin-Helmholtz vortices at the flank magnetopause , 2006 .

[3]  S. A. Zaitseva,et al.  Electric fields and currents in the earth's polar caps , 1985 .

[4]  K. Nykyri,et al.  Plasma transport at the magnetospheric boundary due to reconnection in Kelvin‐Helmholtz vortices , 2001 .

[5]  A. Szabo,et al.  A summary of WIND magnetic clouds for years 1995-2003: model-fitted parameters, associated errors and classifications , 2006 .

[6]  Kathleen E. Hamilton,et al.  Interplanetary magnetic fluctuation anisotropy in the inertial range , 2006 .

[7]  S. Ramo,et al.  Fields and Waves in Communication Electronics , 1966 .

[8]  Charles J. Farrugia,et al.  Response of the equatorial and polar magnetosphere to the very tenuous solar wind on May 11, 1999 , 2000 .

[9]  J. Binsack,et al.  Explorer 33 and 35 plasma observations of magnetosheath flow , 1972 .

[10]  T. I. Gombosia,et al.  Multiscale MHD simulation of a coronal mass ejection and its interaction with the magnetosphere – ionosphere system , 1994 .

[11]  L. Lyu,et al.  Nonlinear evolution of the MHD Kelvin‐Helmholtz instability in a compressible plasma , 2006 .

[12]  S. Schwartz,et al.  Characteristics of the magnetosheath electron boundary layer under northward interplanetary magnetic field: Implications for high‐latitude reconnection , 2005 .

[13]  G. Paschmann,et al.  The magnetosheath region adjacent to the dayside magnetopause: AMPTE/IRM observations , 1994 .

[14]  Tamas I. Gombosi,et al.  Waves on the dusk flank boundary layer during very northward interplanetary magnetic field conditions: Observations and simulation , 2007 .

[15]  C. Russell,et al.  The influence of the interplanetary magnetic field and thermal pressure on the position and shape of the magnetopause , 1981 .

[16]  J. Sauvaud,et al.  The exterior cusp and its boundary with the magnetosheath: Cluster multi-event analysis , 2004 .

[17]  J. Borovsky,et al.  The reconnection of magnetic fields between plasmas with different densities: Scaling relations , 2007 .

[18]  Lou‐Chuang Lee,et al.  Energy coupling function and solar wind‐magnetosphere dynamo , 1979 .

[19]  H. Matsui,et al.  Tenuous solar winds: Insights on solar wind–magnetosphere interactions , 2008 .

[20]  L. Rastätter,et al.  Magnetosheath variations during the storm main phase on 20 November 2003: Evidence for solar wind density control of energy transfer to the magnetosphere , 2005 .

[21]  F. Mozer,et al.  A quantitative model for the potential resulting from reconnection with an arbitrary interplanetary magnetic field , 1974 .

[22]  S. Wing,et al.  Global cooling and densification of the plasma sheet during an extended period of purely northward IMF on October 22–24, 2003 , 2005 .

[23]  C. Meng,et al.  Some low‐altitude cusp dependencies on the interplanetary magnetic field , 1989 .

[24]  M. Kivelson,et al.  MHD simulations of Io's interaction with the plasma torus , 1998 .

[25]  Michael Hesse,et al.  What determines the reconnection rate at the dayside magnetosphere , 2008 .

[26]  R. Winglee,et al.  Dawn‐dusk asymmetries in the low‐latitude boundary layer arising from the Kelvin‐Helmholtz instability: A particle simulation , 1995 .

[27]  J. Sauvaud,et al.  Dynamics of plasma, energetic particles, and fields near synchronous orbit in the nighttime sector during magnetospheric substorms , 1980 .

[28]  Michelle F. Thomsen,et al.  Necessary conditions for geosynchronous magnetopause crossings , 2005 .

[29]  ’. Otto Kelvin-Helmholtz Instability at the Magnetotail Boundary: MHD Simulation and Comparison with Geotail Observations , 2022 .

[30]  C. Owen,et al.  Computing the reconnection rate at the Earth's magnetopause using two spacecraft observations , 2004 .

[31]  G. Siscoe,et al.  Hill model of transpolar potential saturation: Comparisons with MHD simulations , 2002 .

[32]  V. M. Vasyli Comparative magnetospheres: lessons for Earth , 2004 .

[33]  D. L. De Zeeuw,et al.  Multi-Scale Modeling of Magnetospheric Reconnection. , 2007 .

[34]  Charles J. Farrugia,et al.  Anomalous magnetosheath properties during Earth passage of an interplanetary magnetic cloud , 1995 .

[35]  Frederick J. Rich,et al.  A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables , 2007 .

[36]  W. Lyatsky,et al.  Currents over the auroral arc , 1977 .

[37]  A. Dmitriev,et al.  Dawn‐dusk asymmetry of geosynchronous magnetopause crossings , 2004 .

[38]  P. Song,et al.  The location and shape of the magnetopause , 2002 .

[39]  David G. Sibeck,et al.  Solar wind control of the magnetopause shape, location, and motion , 1991 .

[40]  Christopher T. Russell,et al.  A new functional form to study the solar wind control of the magnetopause size and shape , 1997 .

[41]  H. Cane,et al.  A survey of interplanetary coronal mass ejections in the near-Earth solar wind during 1996-2002 , 2003 .

[42]  T. Mukai,et al.  Geotail observations of magnetosheath flow near the magnetopause, using wind as a solar wind monitor , 1997 .

[43]  C. Russell,et al.  Comments on “Towards an MHD theory for the standoff distance of Earth's bow shock” by I. H. Cairns and C. L. Grabbe , 1996 .

[44]  S. D. Drell,et al.  DRAG AND PROPULSION OF LARGE SATELLITES IN THE IONOSPHERE. AN ALFVEN PROPULSION ENGINE IN SPACE , 1965 .

[45]  S. Schwartz,et al.  Evidence for newly closed magnetosheath field lines at the dayside magnetopause under northward IMF , 2006 .

[46]  D. Weimer,et al.  Saturation of the auroral electrojet current and the polar cap potential , 1990 .

[47]  M. Freeman,et al.  Solar wind input between substorm onsets during and after the October 18–20, 1995, magnetic cloud , 1999 .

[48]  S. Petrinec,et al.  Stability of the high‐latitude reconnection site for steady northward IMF , 2000 .

[49]  C. Clauer,et al.  Characterizing the 18 April 2002 storm‐time sawtooth events using ground magnetic data , 2006 .

[50]  Chaosong Huang Evidence of periodic (2–3 hour) near‐tail magnetic reconnection and plasmoid formation: Geotail observations , 2002 .

[51]  R. A. Smith,et al.  Prediction of geomagnetic activity , 1993 .

[52]  J. Lyon,et al.  The Earth's magnetosphere is 165 RE long: Self‐consistent currents, convection, magnetospheric structure, and processes for northward interplanetary magnetic field , 1995 .

[53]  M. Hairston,et al.  Saturation of the ionospheric polar cap potential during the October–November 2003 superstorms , 2005 .

[54]  S. Shepherd Polar cap potential saturation: Observations, theory, and modeling , 2007 .

[55]  F. M. Neubauer,et al.  Nonlinear standing Alfvén wave current system at Io: Theory , 1980 .

[56]  J. Drake,et al.  Orientation of the reconnection X‐line , 2007, 0704.2758.

[57]  Christopher T. Russell,et al.  The magnetosphere on May 11, 1999, the day the solar wind almost disappeared: I. Current systems , 2000 .

[58]  G. Siscoe,et al.  A theoretical relation between Dst and the solar wind merging electric field , 1974 .

[59]  S. A. Boardsen,et al.  An empirical model of the high‐latitude magnetopause , 2000 .

[60]  G. Siscoe,et al.  Transpolar potential saturation: Roles of region 1 current system and solar wind ram pressure , 2002 .

[61]  K. Papadopoulos,et al.  Global MHD simulations of the strongly driven magnetosphere: Modeling of the transpolar potential saturation , 2005 .

[62]  M. Scholer On the motion of artificial ion clouds in the magnetosphere , 1970 .

[63]  Christopher T. Russell,et al.  The solar wind interaction with the Earth's magnetosphere: a tutorial , 2000 .

[64]  Adam Szabo,et al.  The location of low Mach number bow shocks at Earth , 2001 .

[65]  A. Ridley A new formulation for the ionospheric cross polar cap potential including saturation effects , 2005 .

[66]  G. Keating,et al.  Space Science and Applications , 1985 .

[67]  R. Gendrin,et al.  Relationships between the solar wind electric field and the magnetospheric convection electric field , 1981 .

[68]  R. A. Wentzell,et al.  Hydrodynamic and Hydromagnetic Stability. By S. CHANDRASEKHAR. Clarendon Press: Oxford University Press, 1961. 652 pp. £5. 5s. , 1962, Journal of Fluid Mechanics.

[69]  K. Seki,et al.  The secondary instability initiated by the three-dimensional nonlinear evolution of the Kelvin-Helmholtz instability , 2007 .

[70]  S. Fuselier,et al.  High‐latitude magnetic reconnection in sub‐Alfvénic flow: Interball Tail observations on May 29, 1996 , 2001 .

[71]  T. Pulkkinen,et al.  Solar wind electric field driving of magnetospheric activity: Is it velocity or magnetic field? , 2007 .

[72]  A. Summers,et al.  Hydromagnetic flow around the magnetosphere , 1966 .

[73]  James A. Slavin,et al.  Boundary layer formation in the magnetotail: Geotail observations and comparisons with a global MHD simulation , 1997 .

[74]  M. Thomsen,et al.  Solar wind plasma entry into the magnetosphere under northward IMF conditions , 2008 .

[75]  T. Pulkkinen,et al.  Comparative statistical analysis of storm time activations and sawtooth events , 2007 .

[76]  Joachim Raeder,et al.  Polar cap potential saturation during large geomagnetic storms , 2005 .

[77]  R. Walker,et al.  A global magnetohydrodynamic simulation of the response of the magnetosphere to a northward turning of the interplanetary magnetic field , 1994 .

[78]  J. King,et al.  Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data , 2005 .

[79]  Joseph E. Borovsky,et al.  Effect of plasmaspheric drainage plumes on solar‐wind/magnetosphere coupling , 2006 .

[80]  Rumi Nakamura,et al.  Hermean Magnetosphere-Solar Wind Interaction , 2007 .

[81]  T. Hill,et al.  Mercury and Mars: The role of ionospheric conductivity in the acceleration of magnetospheric particles , 1976 .

[82]  R. W. Spiro,et al.  Dependence of polar cap potential drop on interplanetary parameters , 1981 .

[83]  M. Fujimoto,et al.  Anomalous ion mixing within an MHD scale Kelvin-Helmholtz vortex , 1994 .

[84]  C. Russell,et al.  Magnetopause shape determinations from measured position and estimated flaring angle , 1999 .

[85]  G. Parks,et al.  Global impact of ionospheric outflows on the dynamics of the magnetosphere and cross-polar cap potential , 2002 .

[86]  C. Russell,et al.  Reconnection at the high‐latitude magnetopause during northward interplanetary magnetic field conditions , 2001 .

[87]  B. Abraham-Shrauner,et al.  Theoretical proton velocity distributions in the flow around the magnetosphere , 1966 .

[88]  Christopher T. Russell,et al.  Properties of Interplanetary Coronal Mass Ejections at One AU During 1995 – 2004 , 2006 .

[89]  J. Birn,et al.  Thin current sheets in the magnetotail and the loss of equilibrium , 2001 .

[90]  J. Luhmann,et al.  Solar Wind Control of the Polar CAP Voltage , 1986 .

[91]  D. Hunten,et al.  Depletion of solar wind plasma near a planetary boundary , 1976 .

[92]  C. Meng,et al.  Ionospheric projections of magnetospheric regions under low and high solar wind pressure conditions , 1994 .

[93]  T. Nagatsuma Conductivity dependence of cross-polar potential saturation , 2004 .

[94]  C. Clauer,et al.  A statistical study of magnetic dipolarization for sawtooth events and isolated substorms at geosynchronous orbit with GOES data , 2006 .

[95]  Michelle F. Thomsen,et al.  Electron heating and the potential jump across fast mode shocks. [in interplanetary space , 1988 .

[96]  G. Paschmann,et al.  Structure of the Dayside Magnetopause for Low Magnetic Shear , 1993 .

[97]  M. Dunlop,et al.  High‐altitude cusp flow dependence on IMF orientation: A 3‐year Cluster statistical study , 2005 .

[98]  Michael Hesse,et al.  Geospace Environmental Modeling (GEM) magnetic reconnection challenge , 2001 .

[99]  M. Kivelson,et al.  Anomalous aspects of magnetosheath flow and of the shape and oscillations of the magnetopause during an interval of strongly northward interplanetary magnetic field , 1993 .

[100]  J. Birn,et al.  General magnetic reconnection, parallel electric fields, and helicity , 1988 .

[101]  L. Rosenqvist,et al.  An unusual giant spiral arc in the polar cap region during the northward phase of a Coronal Mass Ejection , 2007 .

[102]  L. Blomberg,et al.  Dynamic response of the cusp morphology to the solar wind: A case study during passage of the solar wind plasma cloud on February 21, 1994 , 1996 .

[103]  A. Ridley Alfvén wings at Earth's magnetosphere under strong interplanetary magnetic fields , 2007 .

[104]  Tamas I. Gombosi,et al.  Ionospheric control of the magnetosphere: conductance , 2004 .

[105]  Three‐dimensional artificial neural network model of the dayside magnetopause , 2000, 1302.1704.

[106]  M. Henderson The May 2–3, 1986 CDAW‐9C interval: A sawtooth event , 2004 .

[107]  V. Formisano,et al.  The three-dimensional shape of the magnetopause , 1979 .

[108]  Clinton P. T. Groth,et al.  A numerical study of solar wind—magnetosphere interaction for northward interplanetary magnetic field , 1999 .

[109]  V. L. Patel,et al.  A study of geomagnetic storms , 1975 .

[110]  M. Liemohn,et al.  Comment on “Nonlinear response of the polar ionosphere to large values of the interplanetary electric field” by C. T. Russell et al. , 2002 .

[111]  D. Baker,et al.  Bidirectional solar wind electron heat flux events , 1987 .

[112]  G. K. Walters Effect of oblique interplanetary magnetic field on shape and behavior of the magnetosphere , 1964 .

[113]  F. Mozer,et al.  Comparison of S3-3 polar cap potential drops with the interplanetary magnetic field and models of magnetopause reconnection , 1983 .

[114]  Michelle F. Thomsen,et al.  Ion and electron heating at collisionless shocks near the critical Mach number , 1985 .

[115]  G. Reid Magnetosphere Ionosphere Coupling , 1976 .

[116]  J. Slavin,et al.  Major flattening of the distant geomagnetic tail , 1986 .

[117]  C. Russell,et al.  Nonlinear response of the polar ionosphere to large values of the interplanetary electric field , 2001 .

[118]  E. W. Pogue,et al.  Strong bulk plasma acceleration in Earth's magnetosheath: A magnetic slingshot effect? , 2007 .

[119]  J. Borovsky,et al.  Differences between CME‐driven storms and CIR‐driven storms , 2006 .

[120]  M. Hoshino,et al.  Turbulent mixing and transport of collisionless plasmas across a stratified velocity shear layer , 2006 .

[121]  M. Dunlop,et al.  The plasma sheet and boundary layers under northward IMF: A multi-point and multi-instrument perspective , 2008 .

[122]  F. Michel,et al.  Diffusive entry of solar‐flare particles into geomagnetic tail , 1970 .

[123]  M. Kivelson,et al.  Saturation of the polar cap potential: Inference from Alfven wing arguments , 2008 .

[124]  A. Sharma,et al.  Effects of the solar wind electric field and ionospheric conductance on the cross polar cap potential: Results of global MHD modeling , 2003 .

[125]  Wolfgang Baumjohann,et al.  The near-Earth plasma sheet: An AMPTE/IRM perspective , 1993 .

[126]  J. C. Cain,et al.  Summary and future work , 1973 .

[127]  J. Borovsky,et al.  Role of solar wind turbulence in the coupling of the solar wind to the Earth's magnetosphere , 2003 .

[128]  J. Raeder,et al.  Plasma sheet formation during long period of northward IMF , 2005 .

[129]  Q. Stout,et al.  Multiscale MHD simulation of a coronal mass ejection and its interaction with the magnetosphere{ionosphere system , 2000 .

[130]  A. Vaivads,et al.  Modulated reconnection rate and energy conversion at the magnetopause under steady IMF conditions , 2008 .

[131]  E. Parker The reconnection rate of magnetic fields. , 1973 .

[132]  C. Russell,et al.  An empirical relationship between interplanetary conditions and Dst , 1975 .

[133]  A. Ridley,et al.  Transpolar potential saturation models compared , 2004 .

[134]  P. Cassak,et al.  Asymmetric Magnetic Reconnection: General Theory and Collisional Simulations , 2007 .

[135]  W. J. Burke,et al.  Testing the Hill model of transpolar potential saturation , 2003 .

[136]  J. Steinberg,et al.  Geotail observations of the Kelvin‐Helmholtz instability at the equatorial magnetotail boundary for parallel northward fields , 2000 .

[137]  J. Borovsky Global sawtooth oscillations of the magnetosphere , 2004 .

[138]  Joseph E. Borovsky The rudiments of a theory of solar wind/magnetosphere coupling derived from first principles: THEORY OF SOLAR WIND COUPLING , 2008 .

[139]  A. Walker The Kelvin-Helmholtz instability in the low-latitude boundary layer , 1981 .

[140]  Steven Peter Joy,et al.  The magnetic field and magnetosphere of Ganymede , 1997 .

[141]  C. Russell,et al.  Near-Earth magnetotail shape and size as determined from the magnetopause flaring angle , 1996 .

[142]  C. Russell,et al.  Proxy studies of energy transfer to the magnetosphere , 1991 .

[143]  H. Hasegawa,et al.  Transport of solar wind into Earth's magnetosphere through rolled-up Kelvin–Helmholtz vortices , 2004, Nature.